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Previous experiments and limits on neutron charge ¢,

PHYSICAL REVIEW 25 JANUARY 1967

VOLUME 153, NUMBER §

Experimental Limit for the Neutron Charge*
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PHYSICAL REVIEW D VOLUME 25, NUMBER 11 1 JUNE 1982

Experimental limit for the charge of the free neutron
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Perfect crystal neutron interferometer

Perfect crystal neutron LLL interferometer

PLATE FOR
TOPOGRAPH
A
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WEDGE SHIFT
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Alternatively:

—» neutrons/40 000 monitor pulses

Introduced phase shift (Ap) between beams in the NI

3w0 P L) . LY ..

de viated - beam (H)
2000}

forward - beam (0)

1000 . o o . « * e °

l ' 1 1 1 1

Phase shift (A@) between beams in NI

Iy(Ap) = B — Acos(Ap)

Swapping intensity
between O- and H-beams

In(Ap) = V(1 + cos(Ap))

H. Rauch et al., 1974

» crossing coherent waves produce interference pattern of period d

* these interference fringes are superimposed with crystal lattice (d) => Moiré effect (fringes)

e Ag results in the lateral shift of interference fringes w.r.t. crystal lattice

* this leads to oscillations of Moiré fringes, i.e. oscillations of recorded intensity
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Gedanken experiment with crystal interferometer: ¢,

Electric field across neutron beams => shift of interference pattern:

PLATE FOR
TOPOGRAPH
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Neutron interferometer with larger length and wavelength

PLATE FOR d

in VI,E 12 )2

Now imagine we can modify our interferometer towards larger length and wavelength,
however with corresponding increase of d.

< >=

A 2A >20A => x10? d: 2A->1pum =>x(2-107%)

-—
WEDGE SHIFT

Scaling to VCN:

X Thermal to cold
L:5cm->5m => x104 Iy: VA=5 => x(3-1073) neutron source: x 15

Total gain about 10 => one can put a harder limit on g,

However, for cold neutrons one should use other than the Laue diffraction coherent splitting of neutron waves

Member of the Helmholtz Association Slide 6 ‘J JULICH

Forschungszentrum



(Very) cold neutrons: coherent beam splitting

For cold neutrons one should employ other than the Laue diffraction coherent splitting of neutron waves:
diffraction on periodical structures (gratings) or reflection from semi-transparent coatings.

Effective neutron diffraction gratings: modulated surface relief

A.loffe et al, JETP letters 33, 374 (1981)

d=21um A= 274 A1/1=32% (Nimirror)

Diffraction efficiency: 7 (counts/200 s)
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Note asymmetry: spectrum of incident beam => spectroscopy
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Coherent beam splitter

T. Ebisawa et al, NIM A 344, 597 (1994)

V-Ti multilayer mirror with spacing d=360 A

1

REFLECTIVITY
=
o

A = SA . 8 b
e oPo ° il
s o .;
-] °% 823 7
- po
?.l " 1 n l i 1
600 800 1000 1200
A/sinf

9 JULICH

Forschungszentrum



Cold neutron interferometers

Volume 111, number 7 PHYSICS LETTERS 30ﬂSeptember 1985

TEST OF A DIFFRACTION GRATING NEUTRON INTERFEROMETER

AL IOFFE, V.S. ZABIYAKIN and G.M. DRABKIN

Neutron interferometer of Mach-Zender type D
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PHYSICAL REVIEW A

VOLUME 54, NUMBER 1 JULY 1996

Interferometer for cold neutrons using multilayer mirrors

Haruhiko Funahashi,"* Toru Ebisawa,' Tomohito Haseyama,> Masahiro Hino,> Akira Masaike? Yoshié Otake,*

Idea: T. Ebisawa et al, NIM A 344, 597 (1994)
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3- grating interferometers

Spherical incident wavefronts diffracted Unavoidable different aberrations in interfering beams:

by periodic structures are principally aberrated, => add complimenting aberrations for equalization.
but non-identical for m=1 and m=-1.

Deflection --> Diffraction: gratings instead of mirrors

v 3-grating interferometers

- " e’ deg da/?
005 0

=> Strong requirements to incident beam
divergence
B"-a?_ —> Bad for neutrons in general; unfeasible for VCN

Interference of two non-indentical waves:
=> non-constant period of the interference pattern Aberration analysis shows that now interfering
=> amplitude modulation over the beam cross-section wavefronts are distorted identically and V=1:
=> low visibility V => no requirements to incident beam divergence
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Diffraction grating interferometers

This is not the Talbot interferometer: Talbot effect is a near-field diffraction effect,
where the self-imaging of periodic objects (gratings) requires spatially coherent illumination.

Here: the imaging of a grating by a second grating regardless of the coherence of the source.

* First shown by first-order diffraction theory (i.e. without accounting for aberrations):
(B.Chang, R.Alferness, E.Leith (Apll. Opt. 14 (1975) 1569) .

d/2

* Aberration analysis (higher-orders diffraction theory): full compensation of aberrations
=> interfering waves are identical (4.loffe, NIM A268 (1988) 169).

Such interferometer works

’ - regardless of the source coherence,
X i.e. for non-monochromatic and
-colli I
Identical waves non-collimated neutron beam!
Transition to neutrons: 5 As neutrons propagate on parabolic trajectories,
refraction index of vacuum in gravitational field #1. | n = |1 - 2gz (%) 12| => vacuum has non-linear refraction index.
This is not trivial, will be discussed later.
(I.M Frank, A.I Frank, JETP Lett. 28 (1978) 515)
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VCN diffraction grating interferometer for search of q,

Electric field applied across interferometer beams

A. loffe, NIM A228 (1984) 141; NIM A268 (1988) 169.

1 L\ _V2d 15 (h>2
8=EqE(EmA> q_r[\/]—oELz/lzm

1987- proposal to ILL (accepted, but was not materialized):

e > i 1 to use the same setup at H18 as for previous g, experiment:
| ° 1y=200n/s, A= (20 £0.15) A, E =60 kV/cm, L =5m
o +. 5 - qn =2 - 10?2 e in60days -order of magnitude improvement
} j 1 i I— - im
21T H18 |
I(Ax)=1, V(1+c057 5) 10-30A [ 77 b
S1

Phase diffraction gratings: surface relief

Ni . photoresist
T d=3.3 um
sk hy=1.7 um: phase shift T for 1= 20 A

' deteclor

M52

o Cu layer
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First realization of VCN diffraction grating interferometer

VYolume 140, number 7,8

PHYSICS LETTERS A
A PHASE-GRATING INTERFEROMETER FOR VERY COLD NEUTRONS

M.Gruber, K.Eder, A.Zeilinger, R.Gdhler, W.Mampe
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9 October 1989

Phase diffraction
gratings:

/
2um- GRATING  130um-GRATING
FOR NEUTRONS FOR LASER LIGHT

Interference pattern: obtained
by translation of G; along its surface.

800

A=102 A
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VCN diffraction grating interferometers in gravitational field

g . Refraction index of vacuum in gravitational field
1 (IM Frank, A.I Frank, JETP Lett. 28 (1978) 515)

v | .. \/1 — 29z (";ln)z A2

Neutrons propagate on parabolic trajectories,
i.e. in the media with non-linear refraction index.

Quasi-classical approximation: calculations of the phase of neutron wave, propagating over classical trajectory

V 27-1/2 A.loffe, NIM A268 (1988) 169.
T R T
v, ¥, m, Vv,

uy 2 . V3 V3 P
¢ = f Z (dz) du, @(u)=%[uVu+§—§gE(tanB~ﬂ)],
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VCN grating interferometers in gravitational field

_ M v Vi( 8“)3]
o(u) = 5 [uVu+§ t’r_g,; tan Vﬁ ,

Calculating the velocity components immediately after diffraction, it is possible
to calculate the phase shift of neutron wave during its following propagation.

» If gis strictly parallel to Oz (grating strips), gravitational potentials for both sub-beams are equal (symmetry).
 Violation of this symmetry leads to neutron trajectories rising to different heights => phase difference.

t=lm ¢=2ym | ~ [=10m,d=2um
Axis Oz - along grating strips . e |/ |/
gl 5 304
o | S i
y 0.2 J 40 _A/’/
e 20 A S04
300 400 500 0 1 2 3 4 5

0 100 200
Misalignment g and Oz, urad \/ Misalignment g and Oz, urad

Note different scales!

A challenge for the use of VCN ! " JULICH

Forschungszentrum
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Symmetric 4-grating interferometer

Sagnac effect

(+) for VCN: aberration-free, V=100% for full incoherent illumination
(-) for VCN: requires urad alignment relative g

(-) parasitic Sagnac effect
2mn 2mn .
Ps= "4 (w+d)= 7 woA sin 8,

angular velocity

0,=56° - latitude angle (Lund
(Earth's rotation) ! gle ( )

(1)0 = 729 '10_5 S_l

AL  area enclosed by

/ 4= d?2 interfering beams
30 7
/ Al — AA Scatterin A

Ps 20 -
rs 2 AL
2m b Apg ~ A =—A = 0.14

10 d A

rd
interference fringes
0 For dps>m/2 are washed out.

0 20 40 60 80 100
A Slide 15

Symmetric 4-grating interferometer
A.loffe, NIM A268 (1988) 169.

Complete compensation
of Sagnac phase shift

A=A, (symmetry) =>

Also complete compensation of gravitational phase difference

——
<l

Not for free: one more grating - additional intensity losses
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VCN grating interferometer: adjustment

Ray tracing (not Monte Carlo): regular grid defined by Shannon-Kotelnikov theorem, rather than random grid.

For each ray (neutron) and both interferometer arms:

Non-parallelism of grating planes

1. Vector V of initial neutron velocity is defined in the laboratory

- l24(3)
.1
N ﬂ frame XYZ (OZ parallel g)
0/‘—‘ 2. Components of V are transformed to coordinate frame of

|

Z ‘ grating G4 by the Eulerian rotational matrix

X,
xqm‘? w’)&‘ 3. Velocity vector components after diffraction are determined

| . ! from diffraction grating equation.
- Lia et Z;e. }

4. Phase shift @(u) for propagation over path to G, is calculated.

Z3 V3 3
cb(u)=%’l[uV = ;(tan __gﬁ)]

H
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VCN grating interferometer: adjustment

Ray tracing (not MC): regular grid defined by Shannon-Kotelnikov theorem , rather than random grid.

Non-parallelism of grating planes leads to:

« Path difference and spatial separation between interfering
rays after diffraction on grating G;

» Appearance of interference fringes in the output beam
cross-section => reduced visibility.

 Visibility defines requirements to adjustment accuracy

Dependences of Visibility on misalignment

v v v

@) c

10 Wy, Wy & )

o 8.84 Liy=3m
For L=6m, A= 100 A: -
angular accuracy < 10“, AL < 0.15 mm <:| 0,
08 .
Not a complicate technical problem.

5 10 45 5 10 15 04 02 03 04

B, sec of are W, sec of arc ali,mm
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Diffraction gratings for VCNs

Amplitude gratings

Gd

T’ =
Diffraction " owim?

efficiency:
N> =10.1%

Member of the Helmholtz Association

Requirements: small period and high diffraction efficiency

* Photolithographic gratings (stamping in photoresist)
* Holographic photolithographic gratings (interference lithography )
Holographic nanodiamond-polymer composite gratings (next talk by J.Klepp)

Phase gratings

_ Zn/lh
v p

p - scattering length density

Phase shift: h =1.74 um for 1 =20 A.

N NN
m=0
Nm = n;:nz sin? ((p) NMm = []m(QO)]Z § )
= —d m=2
n,m = 40.4% n,m = 33.8% i
0 1 (o)m; 3 4
JULICH
Forschungszentrum
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Diffraction gratings for VCNs

A. loffe, V. Pipich, JPS Conf. Proc.22, 011014 (2018)

A=10..30A Entrance Toroidal Sample Sample 2D
Electrochemical d eposition ANA=20% Aperture Mirror Position #1 Position #2 PS-Detector Entrance aperture Image at detector
through PR mask
Ni photoresist 7
:: :: WA 1 10 1) A‘E l ~
. Glass substrate Cu layer —— 1
e 3 KWS3@MLZ
d=33um, hy=1.7 um i " 11m
phase shift ¢ =m for A=20 A
(ILL experiment) 100 [
KWS3: 1=12.6 A = tilt 5 1 S N
. £ E High diffraction efficiency
@/sin(a)=m | ] & F
= i E = 107 ‘al
. HRalh 1 3
A hy ?510'1 El Y o E b - ]
S ‘ = E a=90 = S0 [ ]
W g 14 i £ F :
substrate Qt) 10 = E| 8 - !
| D | = F E 0+ L _E,
1073 :
PRNFE T T TN T B B ] P P 10'5 I.IIII'IIIIIIIIIII'IIIIIIIllllll
0 0.5 1 1.5 2.0 2.5 3.0 3.5 -2 O 2 4Q[ 3_4 f"’] 70 12 14
4.0 Q[103A] 107 X LICH
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VCN diffraction grating interferometer at ESS
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Data from L. Zanini

l) JULICH

Forschungszentrum



VCN diffraction grating interferometer at ESS: search for ¢,

Top view

(0.6x80)mMm/1m <

v

L;;=10m
d=2um Beam parameters: the same as at the ILL setup
V=50% Beam cross-section: Sy.,, = 0.48 cm?
E =60 kv/cm Solid angles: w, = 0.0006
LE=6m

wy =0.08 (L=10m, last slit is G,)

AX = 3956 Trep/Lsource—det =14 A

Diffraction efficiency: n*=0.008 (n =30%)
Transmission of substrates (1= 20 A) :

Si 4x0.07cm: Tg=0.93

Si0, 4x 0.3 cm: Tsi0,= 0.63

Irec(/D = B(1) Sheam Wx Wy, 774A/1 Tsi0n

Member of the Helmholtz Association
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0% -
1010 7
10° E
108 E

107 -

1
{1 — sbD: ith ND
SD2 w/out ND
— LD, |

From L. Zanini

B (20 A)= 2 x1010

Expected counting rate:

Lrec(20A) = 4.9:103n/s

10 20 30

40 50

AlA]

60

V2d

70 80

q(d) =

s \/Irec(ﬂ) 8.64 10* Nyqys

20

40 60
Number of days

80

100

1.65 (h)z
VEL?22\mm

qn = 3-107%3 e in 80 days (Cl 90%)

2 orders of magnitude better,
than the present day limit
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VCN diffraction grating interferometer at ESS: search for ¢,

Top view

(0.6x80)mm/1m

v

L;;=10m

Transition to higher A : does it make sense?

1 .
d LDy n~ 27532 ~ 205 Getting worse
CIn ~ T = - 1
VI E L2 27 SD: dn~ 77175 2 ~ 17025 Getting better

SD, is a game changer.
Transition from 20 A to 80 A gives factor of 2 improvement:

qn = 1.5-10723 e in 80 days (Cl 90%)
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Expected counting rate:
Irec(20 A) = 4.9-103n/s
Irec(40A) = 4.9:102n/s

Iec(80 A) = 4-101n/s
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e
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Potential for further improvements in search for ¢,

G ~ d Practically, only “free” parameter
" VIE L2 22 is grating period d .

Reducing the period d of diffraction gratings to sub-um:

(0.6x80)mm/1m

v

L,,,=10m
= directgainas g, ~d
V=50%, E =60 kV/cm, Lz;=6m = increase of diffraction angle g =% ,

Beam parameters: therefore gain in incident beam intensity ~ d? :

Beam cross-section: Sp.., = 0.48 cm?
Solid angles:
w, =0.0006 << A/d = 0.005
wy = 0.08 (L=10m, last slit is G,) Overall gain in q,, ~ d-2
Band: AA=14 A

gain in solid angle w,~ d (still <K A/d )

gain in beam cross-section ~ d

d: 2 um --> 0.5 um results in additional improvement by an order of magnitude: g,, = 10"%* e

h =0.44 um for 1 =80 A

=> Holographic (interference) gratings
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Conclusion

* Interferometry of cold, especially Very Cold Neutrons (VCN) requires diffraction gratings for effective coherent
splitting of neutron waves.

» Diffraction gratings introduce distortions (aberrations) in propagating waves, that however can be
compensated in 3-grating neutron interferometer. Such interferometer works regardless of the source
coherence, i.e. for non-monochromatic and non-collimated neutron beams.

* The Earth gravitational field causes additional aberrations of neutron waves. Moreover, the Earth rotation
results in an additional phase shift (Sagnac effect). Each of these makes large VCN interferometers unfeasible.

* Symmetric 4-grating interferometer allows for the full compensation of both above mentioned effects.

* Such interferometer can be used for the neutron charge quest. Being installed at a new high-brilliance VCN
source at ESS it will allow to improve the present day experimental limit on neutron charge by 2 orders of
magnitude, down to 3 - 10723 e.

* The use of holographic (interference) gratings with sub-um period should allow for additional gain of about 10.

Thank you for attention!
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