

Diffraction-grating VCN interferometry and experimental search for neutron electric charge

Alexander loffe

Jülich Centre for <u>Neutron</u> Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ)

Forschungszentrum Jülich GmbH, Germany

MLZ is a cooperation between:

HighNESS UCN/VCN Workshop May 9-10 2023

Contents:

- 1. I will not discuss "why" to measure q_n , just "how" to measure.
- 2. Earlier attempts and current experimental limit q_n .
- 3. Interferometrical approach using grating interferometers.
- 4. VCN grating interferometer in gravitational field, specific requirements .
- 5. Experiment on neutron charge quest at ESS.

Previous experiments and limits on neutron charge q_n

Perfect crystal neutron interferometer

Member of the Helmholtz Association

Gedanken experiment with crystal interferometer: q_n

Neutron interferometer with larger length and wavelength

Total gain about 10 => one can put a harder limit on q_n

However, for cold neutrons one should use other than the Laue diffraction coherent splitting of neutron waves

(Very) cold neutrons: coherent beam splitting

For cold neutrons one should employ other than the Laue diffraction coherent splitting of neutron waves: diffraction on periodical structures (gratings) or reflection from semi-transparent coatings.

Effective neutron diffraction gratings: modulated surface relief

A.Ioffe et al, JETP letters 33, 374 (1981)

 $d = 21 \,\mu\text{m}$ $\lambda = 2.7 \,\text{\AA}$, $\Delta \lambda / \lambda = 32\%$ (Ni mirror)

Cold neutron interferometers

Forschungszentrum

3- grating interferometers

Unavoidable different aberrations in interfering beams: => add complimenting aberrations for equalization.

Deflection --> Diffraction: gratings instead of mirrors

Aberration analysis shows that now interfering wavefronts are distorted identically and V=1: => no requirements to incident beam divergence

=> low visibility V

Interference of two non-indentical waves:

=> amplitude modulation over the beam cross-section

=> non-constant period of the interference pattern

A.Ioffe, Physica B 174 (1991) 385.

Diffraction grating interferometers

<u>This is not the Talbot interferometer</u>: Talbot effect is a near-field diffraction effect, where the self-imaging of periodic objects (gratings) **requires spatially coherent illumination**.

Here: the imaging of a grating by a second grating **regardless of the coherence of the source**.

- First shown by first-order diffraction theory (i.e. without accounting for aberrations): (*B.Chang, R.Alferness, E.Leith (Apll. Opt. 14 (1975) 1569*).
- Aberration analysis (higher-orders diffraction theory): full compensation of aberrations => interfering waves are identical (*A.Ioffe, NIM A268 (1988) 169*).

Such interferometer works regardless of the source coherence, i.e. for non-monochromatic and non-collimated neutron beam!

Transition to neutrons:

refraction index of vacuum in gravitational field \neq 1.

(I.M Frank, A.I Frank, JETP Lett. 28 (1978) 515)

$$n = \sqrt{1 - 2gz \left(\frac{m_n}{h}\right)^2 \lambda^2} \implies$$

As neutrons propagate on parabolic trajectories, vacuum has non-linear refraction index. This is not trivial, will be discussed later.

VCN diffraction grating interferometer for search of q_n

Electric field applied across interferometer beams

Phase diffraction gratings: surface relief

A. Ioffe, NIM A228 (1984) 141; NIM A268 (1988) 169.

$$\delta = \frac{1}{2} q E \left(\frac{L}{h} m \lambda\right)^2 \qquad q = \frac{\sqrt{2} d}{\pi \sqrt{I_0}} \frac{1.5}{E L^2 \lambda^2} \left(\frac{h}{m}\right)^2$$

1987- proposal to ILL (accepted, but was not materialized): to use the same setup at H18 as for previous q_n experiment:

 I_0 = 200 n/s , λ = (20 ±0.15) Å, E =60 kV/cm, L =5 m

 $q_n \ge 2 \cdot 10^{-22} e$ in 60 days - order of magnitude improvement

Member of the Helmholtz Association

First realization of VCN diffraction grating interferometer

Volume 140, number 7,8 PHYSICS LETTERS A 9 October 1989

A PHASE-GRATING INTERFEROMETER FOR VERY COLD NEUTRONS

M.Gruber, K.Eder, A.Zeilinger, R.Gähler, W.Mampe

Forschungszentrum

VCN diffraction grating interferometers in gravitational field

Refraction index of vacuum in gravitational field (*I.M Frank, A.I Frank, JETP Lett.* **28** (1978) 515)

$$n = \sqrt{1 - 2gz \left(\frac{m_n}{h}\right)^2 \lambda^2}$$

Neutrons propagate on parabolic trajectories, i.e. in the media with non-linear refraction index.

Quasi-classical approximation: calculations of the phase of neutron wave, propagating over classical trajectory

 $z = -\frac{gu^2}{2V_u^2} + \frac{V_z}{V_u} u . \qquad \lambda(u) = \frac{h}{m_n} \left[V_u^2 + \left(V_z - \frac{gu}{V_u} \right)^2 \right]^{-1/2} \qquad A. Ioffe, NIM A268 (1988) 169.$

Gravitational phase shift:

$$\Phi = \int_0^{u_L} \frac{2\pi}{\lambda(u)} \sqrt{1 + \left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2} \,\mathrm{d}u, \qquad \varphi(u) = \frac{m_n}{\hbar} \left[uV_u + \frac{V_z^3}{3g} - \frac{V_u^3}{3g} \left(\tan\beta - \frac{gu}{V_u^2} \right)^3 \right]$$

.

VCN grating interferometers in gravitational field

 $\Phi(u) = \frac{m_n}{\hbar} \left[uV_u + \frac{V_z^3}{3g} - \frac{V_u^3}{3g} \left(\tan \beta - \frac{gu}{V_u^2} \right)^3 \right],$

Calculating the velocity components immediately after diffraction, it is possible to calculate the phase shift of neutron wave during its following propagation.

- If **g** is strictly parallel to Oz (grating strips), gravitational potentials for both sub-beams are equal (symmetry).
- Violation of this symmetry leads to neutron trajectories rising to different heights => phase difference.

Symmetric 4-grating interferometer

Sagnac effect

(+) for VCN: aberration-free, V=100% for full incoherent illumination
(-) for VCN: requires μrad alignment relative g
(-) parasitic Sagnac effect

$$\varphi_{S} = \frac{2m_{n}}{\hbar} (\boldsymbol{\omega} \cdot \boldsymbol{A}) = \frac{2m_{n}}{\hbar} \omega_{0} \boldsymbol{A} \sin \theta_{1},$$

Also complete compensation of gravitational phase difference

Not for free: one more grating - additional intensity losses

VCN grating interferometer: adjustment

Ray tracing (not Monte Carlo): regular grid defined by Shannon-Kotelnikov theorem, rather than random grid.

For each ray (neutron) and both interferometer arms:

- Vector V of initial neutron velocity is defined in the laboratory frame XYZ (OZ parallel g)
- Components of V are transformed to coordinate frame of grating G₁ by the Eulerian rotational matrix
- Velocity vector components after diffraction are determined from diffraction grating equation.
- 4. Phase shift $\Phi(u)$ for propagation over path to G_2 is calculated.

$$\Phi(u) = \frac{m_n}{\hbar} \left[uV_u + \frac{V_z^3}{3g} - \frac{V_u^3}{3g} \left(\tan \beta - \frac{gu}{V_u^2} \right)^3 \right],$$

VCN grating interferometer: adjustment

Ray tracing (not MC): regular grid defined by Shannon-Kotelnikov theorem, rather than random grid.

Non-parallelism of grating planes leads to:

- Path difference and spatial separation between interfering rays after diffraction on grating G₃
- Appearance of interference fringes in the output beam cross-section => reduced visibility.
- Visibility defines requirements to adjustment accuracy

Dependences of Visibility on misalignment

Not a complicate technical problem.

Diffraction gratings for VCNs

Diffraction gratings for VCNs

A. Ioffe, V. Pipich, JPS Conf. Proc.22, 011014 (2018)

VCN diffraction grating interferometer at ESS

VCN diffraction grating interferometer at ESS: search for q_n

Member of the Helmholtz Association

Number of days

VCN diffraction grating interferometer at ESS: search for q_n

Member of the Helmholtz Association

Slide 22

Potential for further improvements in search for q_n

=> Holographic (interference) gratings

$$h = 0.44 \,\mu\text{m}$$
 for $\lambda = 80 \,\text{Å}$

Conclusion

- Interferometry of cold, especially Very Cold Neutrons (VCN) requires diffraction gratings for effective coherent splitting of neutron waves.
- Diffraction gratings introduce distortions (aberrations) in propagating waves, that however can be compensated in 3-grating neutron interferometer. Such interferometer works regardless of the source coherence, i.e. for **non-monochromatic and non-collimated neutron beams**.
- The Earth gravitational field causes additional aberrations of neutron waves. Moreover, the Earth rotation results in an additional phase shift (Sagnac effect). Each of these makes large VCN interferometers unfeasible.
- Symmetric 4-grating interferometer allows for the full compensation of both above mentioned effects.
- Such interferometer can be used for the neutron charge quest. Being installed at a new high-brilliance VCN source at ESS it will allow to improve the present day experimental limit on neutron charge by 2 orders of magnitude, down to $3 \cdot 10^{-23} e$.
- The use of holographic (interference) gratings with sub- μ m period should allow for additional gain of about 10.

Thank you for attention!

