INSTITUT LAUE LANGEVIN

Work Package 3: Material Characterization with Neutrons

Valentin Czamler

Institut Laue-Langevin | NPP HighNESS General Meeting 2023

Outline

- I. Why Very Cold Neutrons (VCN) ?
- II. Moderation to the VCN range
- III. Clathrate Hydrates as a VCN moderator
- IV. WP3 Tasks: Current Status
- V. Manufacturing of THF Hydrates & Structure Analysis
- VI. Determination of the neutron scattering function $S(\mathbf{q}, \omega)$
- VII. Transmission Experiments
- VIII. Outlook

I. A Case for Very Cold Neutrons

Condensed Matter Research

- Gains in spatial & and energy resolution
- Small angle scattering
- ToF Spectroscopy
- Neutron Reflectometry

Particle Physics

- Increased FOM & counting statistics
- nnbar experiments, neutron charge ($\propto \lambda^2$)
- Neutron beam EDM experiment ($\propto \lambda$)
- In-beam UCN sources

Further Reading:

- Particle Physics at the ESS (arXiv:2211.10396)
- Workshop on very cold and ultra cold neutrons https://content.iospress.com/journals/journal-of-neutron-research/24/2

II. How to slow down neutrons?

• Many inelastic interactions ⇒ thermal equilibrium with cold medium

Requirements: weakly absorbing, cold, suitable σ_{scat}

- From CN to VCN: incoherent scattering by local modes:
- Rattling modes Rotation Libration
- Paramagnetic Species

III. Clathrate Hydrates

- <u>Inclusion compounds</u>: **Network** of hydrogen-bond water molecules that host small **guest molecules**
- Stable up to relatively high temperatures
- High scientific interest (energy storage, seabed sediments, climate tipping points)

Adapted from: A. Desmedt, Collection SFN 10 (2010) 545-56

III. Clathrate Hydrates

- Tetrahydrofuran (THF, C_4H_8O) & O_2 , M_2O
- Guest molecules allow for dispersion-free low energy excitations
- Weakly absorbing when fully deuterated
- Unusually-large crystallographic unit cell constitutes a large albedo over the cold neutron range
- Favorable manufacturing conditions

IV. WP3 Tasks

- Task 3.1: Preparation of various experimental tools X
- Task 3.2: Analysis of data obtained for O2-hydrate clathrate $X \rightarrow$ Task 3.5 ?
- Task 3.4: Measurements of S(q, ω) and neutron diffraction for characterization of samples of clathrate hydrates at ILL instruments IN5, Panther, D20, D7, PF1B and PF2/VCN \ge
- Task 3.5: Publication of results (utilizing tools developed in WP2) → Ongoing work in collaboration with WP2

V. Manufacturing of THF-Hydrates

Easy manufacturing technique from stoichiometric mixture

• Contrast variation: $17 \cdot H_2O:C_4H_8O$, $17 \cdot D_2O:C_4H_8O$, $17 \cdot H_2O:C_4D_8O$, $17 \cdot D_2O:C_4D_8O$

VI. Determination of $S(\mathbf{q}, \omega)$ in Absolute Units

- <u>Ultimate goal</u>: A novel moderator with strong enhancement of VCN fluxes ⇒ HighNESS
- Intermediate step: Inelastic neutron scattering study

Spectroscopy at ILL' s **Panther** ($\lambda_i = 1 \text{ Å}, 2 \text{ Å}$) & **IN5** ($\lambda_i = 2 \text{ Å}, 3 \text{ Å}$)

- Vanadium standard (calibration to absolute units)
- Results serve as a benchmark for new scattering kernels in NCrystal

VI. Preliminary Results I

VI. Preliminary Results II

- Contrast variation allows to differentiate between host & guest contribution
- Host lattice modes are in accordance with reported data

(e.g. B. Chazallon et al. Phys. Chem. Chem. Phys., 2002,4, 4809-4816)

OR SOCIET

VI. Transmission Experiments

- Determination of the total cross section throughout the CN & VCN range
- Transmission experiments at ILL (PF1B, PF2|VCN) & PSI (BOA)

$$T = \frac{Z_{sample}}{Z_{empty}} = \exp\left(N_V \ d \ \sigma_{tot}\right), \quad \sigma_{tot} = \frac{1}{N_V d} \cdot \ln(\frac{1}{T})$$

VII. Setups at PF2 | VCN & BOA

- VCN at ILL & BOA at PSI; multipurpose beam line
- Advanced Shielding & Collimation allowed to measure up to 20 Å at BOA
- Sample in beam: 4 cm
- Temperatures 5 & 20 K

VII. Results PF2 | VCN & BOA

- Observation of the Bragg edges of Type-II Clathrate Hydrates in cold range (left)
- For VCN the cross section is dominated by σ_{inc} of Deuterons (right)
- Additional allocated beamtime in 2023 at PF1B and VCN (ILL)

THF

Magnetic Scattering from Encaged O₂

- O_2 is paramagnetic & has a triplet zero-field splitting (~ 0.4 meV)
- Inelastic scattering: E-transfer determined by that zero-field splitting
- Dispersion free \Rightarrow allows for "cascade cooling"

 $m = \pm 1$

m = 0

 E_m

Further Reading: Zimmer, O. (2016): Phys. Rev. C 93, 035503

INSTITUT LAUE LANGEVIN

VIII. Looking Ahead

THE EUROPEAN NEUTRON SOURCE

Manufacturing of binary clathrates

- <u>Binary Clathrate Hydrates</u>: Containing two different guest molecules (THF and O₂)
- Ice technique: Starting with tiny grains of THF hydrates ⇒ exposing them to high pressure (> 250 bar) O₂ atmosphere
- Working on a high pressure autoclave
- How do we get uniform grains <
 5 μm? Will the structure be preserved in the process?
- ⇒ Spraying, Grinding, Milling and subsequent structure analysis

Kuhs, Werner F. (2018): J. Phys. Chem. Lett. 2018, 9, 12 THE EUROPEAN NEUTRON SOURCE

Experimental Schedule for 2023

Instrument	PF2 VCN	PF1B	IN5	Panther	Lagrange	D20	IN16
Experiment	Transmissi on	Transmissi on	TOF	TOF	Vibrational Spec.	Diffraction	Backscattering
Sample	THF Hydrates	THF Hydrates	Binary Hydrates	Binary Hydrates	Binary & THF - Hydrates	Binary & THF - Hydrates	Binary Hydrates
Status	allocated	allocated	proposed	proposed	proposed	proposed	proposed
Duration	20 days	10 days	3 days	3 days	5 days	2 days	2 days
When?	May 25 – June 11	June 12 – June 22	3rd - 4th cycle	3rd - 4th cycle	3rd - 4th cycle	3rd - 4th cycle	3rd - 4th cycle

Acknowledgements

PhD-Advisors:

- Oliver Zimmer
- Richard Wagner

Collaborators:

- HighNess Collaboration
- Arnaud Desmedt (ism Bordeaux)

Instrument Scientists (ILL):

- Thomas Hansen (D20)
- Tobias Jenke (PF2)
- Michael Koza (Panther)
- Jaques Ollivier (IN5)
- Stephanie Roccia (PF2)

Instrument Scientists (PSI):

- Matteo Busi (BOA)
- Uwe Filges (BOA)

Questions ?

INSTITUT LAUE LANGEVIN

Thank you for your attention !

NEUTRONS FOR SOCIETY

> HighNESS is funded by the European Framework for Research and Innovation Horizon 2020, under grant agreement 951782

