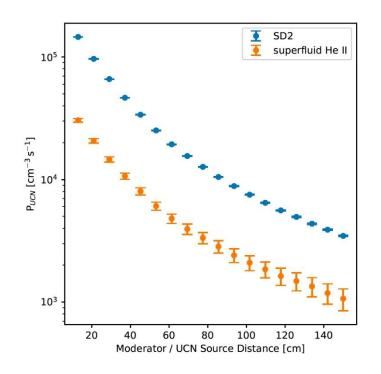
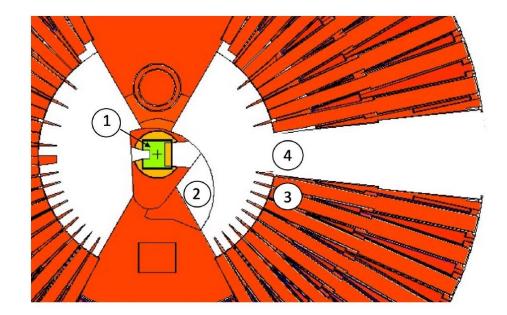
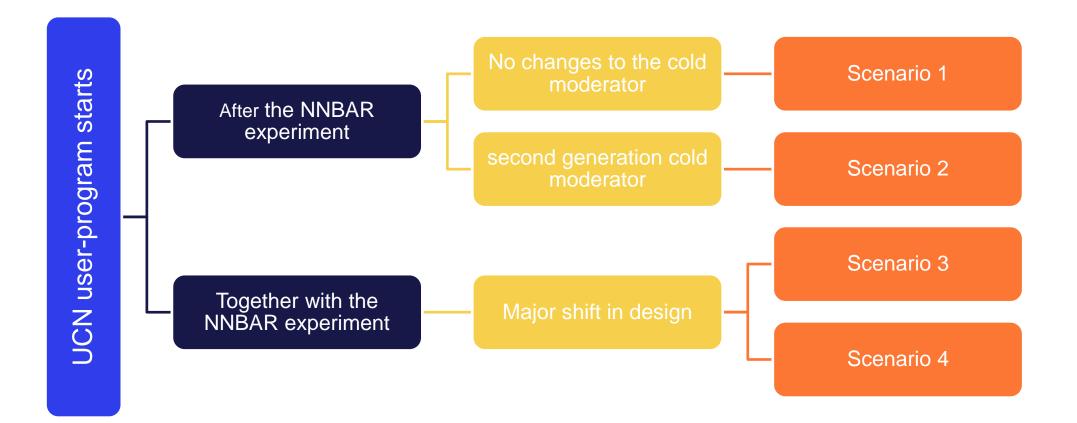


HighNESS general meeting 08/05/2023 – WP4

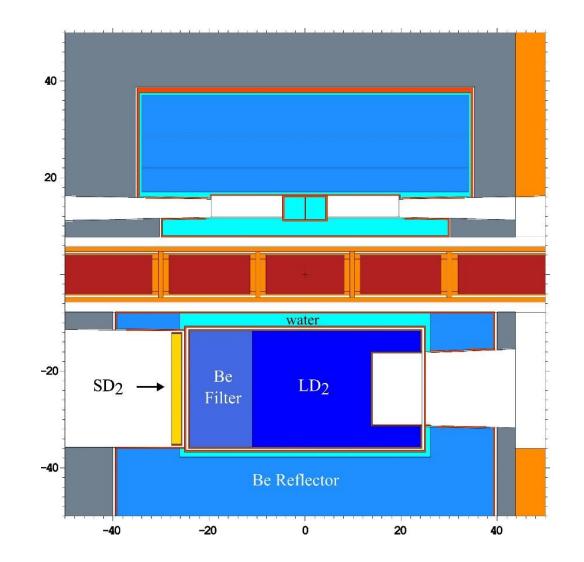

SD₂ UCN Source in the twister


Nicola Rizzi, Amalia Chambon, Luca Zanini

SD₂ in the Twister


• The rationale behind this concept is to maximize the cold flux delivered to the UCN converter

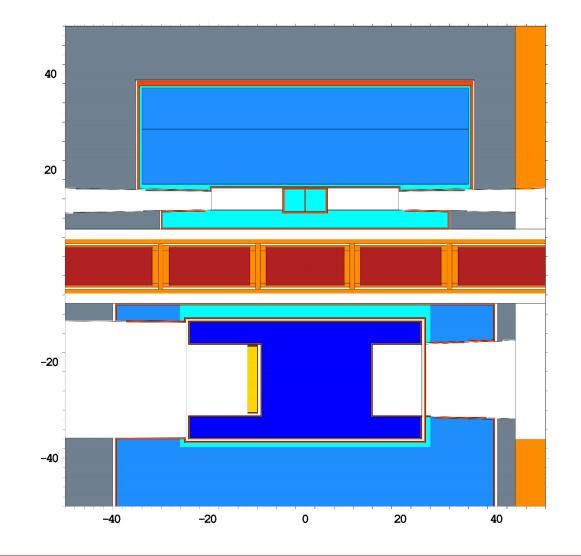
UCN scenarios


4

 The UCN program starts after the NNBAR experiment, and minimal to no changes in the LD₂ moderator are foreseen

> Volume = 1.81 L P_{UCN} = 3.07E+5 UCN/cm³/s Prompt Heat-load = 760 W

- Independent from the LD₂ source
- Be filter could be removed for higher performances
- Possible lack of space to accommodate the cooling infrastructure within the predesigned cold moderator frame

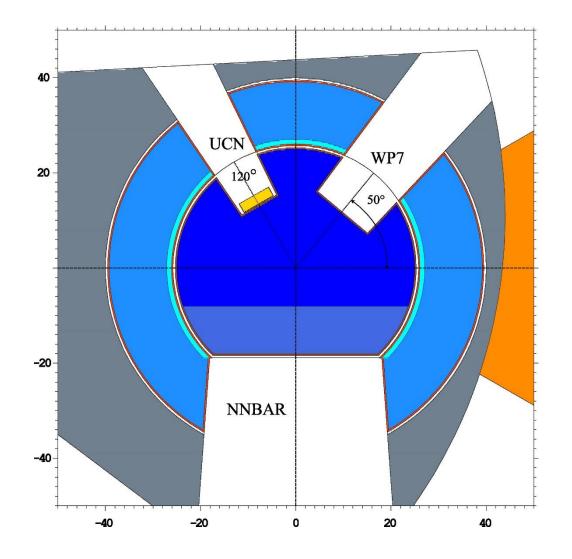


• The UCN program starts after the NNBAR experiment, and a second-generation cold moderator is foreseen

Volume = 0.38 L P_{UCN} = 1.31E+6 UCN/cm3/s Prompt Heat-load = 560 W

- Design not too far from the first generation
- Optimization process includes one of the FOM for UCN production
- The lack of space could be solved by the redesign process

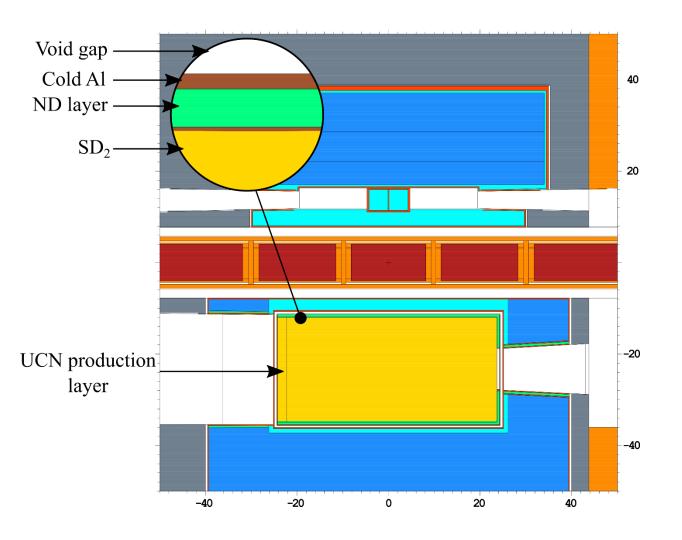
No need of large volumes if close to the hot spot of cold neutron production



• The UCN program runs together with the NNBAR experiment, which means that a major shift in the design is needed.

Volume = 0.13 L P_{UCN} = 1.74E+6 UCN/cm³/s Prompt Heat-load = 520 W

- Cylindrical shape allows for a third opening
- Preliminary simulations have shown that the losses for NNBAR and WP7 are far from being crippling
- This design has many parameters and three figure of merits, so one should expect a long and complex optimization process



 Large SD₂ crystal that could serve the NNBAR experiment, but most likely after

> Volume = 48.2 L P_{UCN} = 9.13E+5 UCN/cm³/s Prompt Heat-load = 40 kW

- High VCN intensity
- UCN "for free" produced in the last centimeters
- This design is the most challenging of all both in terms of design and engineering

8

Conclusion

- All the designs presented have their strengths and their limitations
- · Some of the ideas are challenging

	SD ₂ Volume [L]	P _{UCN} [n/s/cm ³]	Й _{UCN} [n/s]	Heat-load [W]	WP7 FOM [n/s/sr]	NNBAR FOM [nŲ/s/sr]
Baseline + UCN	1.81	$3.07 imes 10^5$	$5.56 imes10^{8}$	760	$\textbf{3.23}\times \textbf{10}^{\textbf{15}}$	-
No Be filter + UCN	1.81	$\rm 4.70 \times 10^{5}$	8.51×10^8	1000	$\textbf{3.06}\times\textbf{10}^{\textbf{15}}$	-
Optimized UCN-only	1.75	$7.72 imes 10^5$	$1.35 imes 10^9$	2910	-	-
Reentrant Hole	0.38	$1.31 imes 10^{6}$	$5.03 imes 10^8$	560	$\textbf{2.81}\times \textbf{10}^{\textbf{15}}$	-
Optimized depth	0.38	$\rm 1.63\times 10^{6}$	$\rm 6.26\times 10^8$	730	$\textbf{2.28}\times\textbf{10}^{\textbf{15}}$	-
Optimized size	0.007	$2.41 imes 10^6$	$1.64 imes 10^7$	28	$\rm 2.96\times10^{15}$	-
3-openings cylinder	0.13	$1.74 imes 10^{6}$	$2.22 imes 10^8$	520	$2.84 imes 10^{15}$	$2.33 imes 10^{17}$
Optimized cylinder	0.07	$\rm 2.34\times10^{6}$	$1.66 imes 10^8$	550	$\rm 2.33\times10^{15}$	$\rm 2.30\times10^{17}$
Full SD ₂ moderator	48.2	$6.56 imes 10^5$	$1.32 imes 10^9$	39886	-	-

The future of the ESS user-program CAN be UCN, and, despite the challenges, the in-twister option WILL provide unprecedented intensity

9

Thank you for the attention