

ESS progress on moderators

Luca Zanini for the HighNESS consortium

LENS/ELENA WG3 meeting 23-24 March 2023, Garching

Design of the Cold Source

Sensitivity increase of factor 1000 in search for neutron-antineutron oscillation compared to previous experiment (M. Baldo-Ceolin et al, 1994).

The development of the NNBAR experiment

To cite this article: F. Backman et al 2022 JINST 17 P10046

The HighNESS/LENS workshop on VCN and HGNNess sources at ESS

- On February 2-4, more than 100 scientists and experts from 23 nationalities took part in the workshop
- Workshop proceedings published open access in a special issue of the Journal of Neutron Research in 2022

https://indico.esss.lu.se/event/2810/

HighNess Workshop on Very Cold and Ultra Cold Neutron Sources for ESS

2-4 February 2022 Europe/Stockholm timezone

https://content.iospress.com/journals/journal-of-neutron-research/24/2

VERY COLD SOURCE

Work in HighNESS concentrated on in-pile SD2 VCN source. **See presentation N. Rizzi tomorrow**. Additional ideas using ND reflectors under study

Advantage of VCN for SANS Journal of Neutron Research 24 (2022) 205–210 ; - Inputs from M. Strobl and F. Mezei

- In a SANS experiment, the beam must be well collimated
- The beam divergence is proportional to $k=2\pi/\lambda$
 - Therefore, for longer wavelengths, there are less stringent beam collimations
- A monocromaticity $\delta\lambda/\lambda$ of the incoming beam allows for a larger used wavelength band $\delta\lambda$ for an incoming beam with larger λ .
- These factors combined imply that the fraction of the beam selected for a given resolution $\delta\lambda/\lambda$ is proportional to λ^5 .
- However, the typical cold spectrum has a Maxwellian tail that goes like λ^{-5} which therefore makes irrelevant the choice of the λ .

Journal of Neutron Research 24 (2022) 205–210 DOI 10.3233/JNR-220012 IOS Press	
Very cold neutror research	ns in condensed matter
Ferenc Mezei	

VCN option: dedicated SD2 source

- Within the HighNESS project we have designed a source based on solid deuterium, where the brightness dependence is significantly above λ^{-5} , i.e., close to $\lambda^{-3.5}$
- This means a theoretical gain at 40 Å, compared to 6 Å, of a factor (40/6)^{-3.5}/(40/6)⁻⁵=17.
- This does not consider negative effects at longer wavelengths such as gravity and neutron absorption.

ULTRA COLD SOURCE

Journal of Neutron Research 24 (2022) 95–110 DOI 10.3233/JNR-220045 IOS Press

UCN sources: 5 possible locations identified at the workshop are currently under study

In-beam superfluid-helium ultracold neutron source for the ESS

Oliver Zimmer^{a,*}, Thierry Bigault^a, Skyler Degenkolb^b, Christoph Herb^c, Thomas Neulinger^a, Nicola Rizzi^d, Valentina Santoro^d, Alan Takibayev^d, Richard Wagner^a and Luca Zanini^d

Potential world-leading UCN densities compared to other facilities under design or construction

Facility	Production density	UCN density
	$\dot{ ho}[\mathbf{cm^{-3}s^{-1}}]$	$ ho[{ m cm^{-3}}]$
ILL/H523 SUPERSUN (ILL)	14	1.7×10^3
Gatchina (Russia)	380	2.2×10^3
LEUNG (inverted geometry)	5×10^{4}	1×10^{4}
SHIN (compact source)	80	4×10^3
ESS/LBP (5MW)	209	6.3×10^4

Source: O. Zimmer, UCN/VCN workshop 2022

Journal of Neutron Research 24 (2022) 145-166

DOI 10.3233/JNR-220007

FOR SD2 based sources, see presentations tomorrow by B. Rataj and N. Rizzi

big thanks to A. Frei for support and precious advices

COLLABORATIONS

HighNESS-BNC on MODERATOR TEST FACILITY

Measurements at the moderator test facility at the Budapest Neutron Center

- See L. Rosta presentation
 - BNC currently building Test Beam line at the Budapest reactor
 - HighNESS prototype experiment with advanced reflectors planned for in June 2023
 - Engineering design and construction by Jülich (HighNESS WP5)
 - Background and activation by DTU (HighNESS WP6)
 - □ ORNL-TS2 recently joined project

Detailed neutronic studies of background and activation.

3 mm above

2 cm mirrobor around + under

HighNESS WP2/3 measurements

Transmission experiment at BOA-PSI

Experimental campaign on graphitic compounds:

- Transmission measurements at BOA:
 - O Initial measurements (May 22).
 - Reduced background (Oct 22).
 - o Included clathrates
 - More measurements planned (Jul 23).

Huge improvement in Signal/noise ratio

Huge improvement in Signal/noise ratio

Spectrum for the empty cell from previous experiment (left), spectrum of the open beam after adjustment (right).

PLANNED COLLABORATIONS: measurements at ILL

ND reflectivity measurement @PF1B, May 2023

• Measurement of angular distribution in transversal plane perpendicular to scattering plane

Measurement of cross section of VCN and UCN in solid ortho-deuterium at cryogenic temperatures at and above T = 5K

- Proposal submitted at PF2/VCN and PF2/VCN
- New collaboration (ESS,ILL, MLZ, PSI) reviving original proposal by C. Morkel et al.
- No dates defined by if beamtime granted it is good for planning, and possible financial support

NEXT EVENTS

9-10 May 2023 Europe/Stockholm timezone

Overview

Timetable

Contribution List

Registration

Travel to ESS

Accomodation in Lund

Contact

ucnvcness@ess.eu

https://indico.esss.lu.se/event/3195/

HighNESS is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 951782 ighNess

- Planned for one week, May 22-26 2023 at the ESS Campus in Lund, Sweden.
- Likely first school of this kind: we will aim at graduate students and start from the basics.
- It will cover scattering theory, generation of thermal scattering kernels using NCrystal, and application to Monte Carlo simulations using OpenMC.
- We are close to the maximum number of participants. Please contact us to participate:
- tsl.school@ess.eu

Thanks to everybody

4.1