EUROPEAN
SPALLATION

SOURCE

Spectroscopy Scientific and Technical Advisory Panel

Instrument Data Scientist Report

Gregory Tucker

April 18, 2023

1 Pixel mapping

The last ESS Spectroscopy STAP Report [1] included a re-
quest for information about pixel mapping plans.

Comprehensive details are available from the Experi-
ment Control and Data Curation (ECDC) Instrument Status
Overview page within ESS Confluence. The CSPEC docu-
mentation there does not yet reflect the change to *He de-
tectors, but should instead be similar to that for BIFROST.

A high-level summary of the planned pixelation scheme
follows: 1. signals from the ends of a wire, A and B, are
digitized by one of series of Front End Nodes; 2. a Read-
out Master collects the digitized signals, bundles them into
packets along with timing information, and sends the pack-
ets to a server room located in the Central Utility Building,
HO1, on the ESS site; 3. an instance of the Event Formation
Unit (EFU) software uses linear charge division to pixelate
each wire.

Conversion to pixels from the continuous charge-
division signal, x = A/(A + B), will require two values per
tube to identify its ends. The EFU extracts x between the
specified end-points and optionally applies a nonlinear
correction with calibrated polynomial coefficients before
subdividing it into a configurable number of pixels. The
number of EFU pixels should match the position resolution
of the tube.

Since the ESS data transformation for spectroscopy will
keep neutron event data and avoid unnecessarily produc-
ing histograms, combining pixels to, e.g., match instrumen-
tal resolution conditions, will only be performed preceding
the final histogram-creating step.

2 Project planning

Since the October 2022 STAP meeting, extra emphasis
has been placed on project planning at the IDS level.
As with other DMSC projects, a JIRA project, DMSC Spec-
troscopy, has been created to track the DMSC deliverables
for BIFROST and CSPEC. Currently efforts are focused on
aligning the project with requirements as seen by groups
within DMSC as well as the BIFROST and CSPEC teams.

3 Simulations

Efforts to integrate McStas simulations into the ESS event
pipeline continue [2]. Since the last report:

« The detector component has been extended to sup-
port other arrangements of multiple 3He tubes, like
the constant-radius MultiTube arrays now-expected
for CSPEC. Figure 1 shows multiple tube arrays now
possible with the McStas component.

- The readout master component has been refactored.
The changes have made installing and using the
shared library and McStas component easier on new
systems, and allow for automatic EFU control even in
parallel MPI runtime environments.

The full BIFROST spectrometer can now be used via
McStasScript to simulate neutrons from the ESS source
through to pixel identification in the EFU.

« BIFROST primary spectrometer Monte Carlo Particle
List (MCPL) files exist for a small subset of possible
chopper settings, which can be used to significantly
improve the simulated instrument throughput with,
e.g., complex Union samples.

Planned next-steps include:

« DMSCSPEC-8 Complete the readout chain by getting
simulated events from the EFU through to a NeXus file.

« DMSCSPEC-9 Simulate a BIFROST experimenti, includ-
ing produing at least one (Q, E) map.

« DMSCSPEC-10 Pass the simulated experiment data
through the data transformation workflow.

4 Flexible user tools

Some tasks are made easier through graphical user inter-
faces (GUI) to scripts or other routines. A user may request
atoolto help carry out a measurement, which must be flex-
ible enough to support their specific use case, and must be
available quickly if it is to be useful.


https://confluence.esss.lu.se/display/ECDC/Instrument+Status+Overview
https://confluence.esss.lu.se/display/ECDC/Instrument+Status+Overview
https://project.esss.dk/owncloud/index.php/s/4M60TNdqkMcppUX
https://github.com/ess-dmsc/event-formation-unit
https://github.com/ess-dmsc/event-formation-unit
https://jira.esss.lu.se/projects/DMSCSPEC
https://jira.esss.lu.se/projects/DMSCSPEC
https://github.com/g5t/mcstas-detector-tubes
https://github.com/g5t/mcstas-readout-master
https://jira.esss.lu.se/projects/DMSCSPEC/issues/DMSCSPEC-8
https://jira.esss.lu.se/projects/DMSCSPEC/issues/DMSCSPEC-9
https://jira.esss.lu.se/projects/DMSCSPEC/issues/DMSCSPEC-10

nnnmmm
LT
‘0 “‘\‘H H

Il ‘U\
\\

Figure 1: Multiple tube arrays in a test McStas instrument,
including a BIFROST triplet (purple); a curved ar-
ray (blue), like those planned for CSPEC but much
shorter to fit in this image; a double-layer fan ar-
ray (green), like that used on CAMEA.

Python is the language of choice for all ESS software in-
terfaces since it is free, open source, and has an exten-
sive catalog of community-provided modules to augment
its capabilities. These qualities make it well suited to rapid
prototyping and development, which in turn makes it an
ideal language for producing user-facing tools.

Thanks to the vast module catalog, there are many op-
tions for graphical interfaces in Python. One option that
requires little development effort to use in simple GUIs
is Jupyter Widgets which provide graphical interfaces to
Jupyter notebooks. Previously the use of voila has been
discussed for stand-alone GUIs [3].

To make any GUI tool written in Python available to users
we can 1. distribute installers, 2. host it on ESS hardware,
3. distribute source files, or 4. make use of client-side web
browser based interfaces.

Producing and distributing installers for any application
can be resource intensive. Such an investment may be
worthwhile for large stable programs or performance sen-
sitive applications, but is likely wasteful for one-off tools.

Hosting on ESS hardware can reduce a large part of
the development effort compared to distributing installers;
mainly from having machine control and only targeting
a single machine (or multiple identical machines). Still,
configuring and running the hosting system requires rel-
atively high resource use, which may not be suitable for
in-development tools.

Distributing the source files which constitute a Python
tool confers all of the advantages of open-source soft-
ware. There may exist a high entry-barrier, however, since
Python’s modularity can make it challenging to use code
written on another machine due to differing computing
environments. Semi-automatic configuration of comput-
ing environments is possible via a variety of tools, notably
mamba, but as they require installation and subsequent

Gregory Tucker

European Spallation Source DMSC

Instrument Data Scientist Report

T I

Python (Pyodide) O

i O m

it emev
a0 99

Figure 2: The magnet opening-angle visualization tool, run-
ning in a Jupyterlite notebook.

command-line use they may not be suitable for all users.

Web browser based interfaces have the significant ad-
vantage that they run on top of software which is almost-
certainly already present on a user's computer. Through
WebAssembly and the Pyodide Python distribution it is
possible to run Python-based tools on a user's machine
with no user-configuration and near-native performace. It
is even possible to run notebooks in a browser via Jupyter-
lite. For simple GUI tools this can allow for both rapid de-
velopment and ease of use, even for novice users.

Recently, to support design of a new magnet a tool
was required to help visualize the effect different opening-
angles would have on accessible reciprocal space for a
direct-geometry spectrometer (DGS) like CSPEC. The in-
tended audience for the tool were the engineers, techni-
cians, and scientists involved in setting the magnet design
criteria, but a similar tool could prove useful for users of
a magnet on a DGS as well. The source code of the tool is
hosted on Github which also provides free webhosting for
the Jupyterlite interface. The tool running after interacting
with some of the GUI elements is shown in figure 2.

References

[1] G. Ehlers, ESS Spectroscopy STAP Report, tech. rep.
(2022-10).

[2] G. Tucker, IDS Report, tech. rep. (2022-10).
[3] G.Tucker, IDS Report, tech. rep. (2022-04).


https://ipywidgets.readthedocs.io/
https://jupyter.org/
https://voila.readthedocs.io/
https://github.com/conda-forge/miniforge
https://pyodide.org/
https://jupyterlite.readthedocs.io/
https://jupyterlite.readthedocs.io/
https://github.com/g5t/tof-tools/
https://g5t.github.io/tof-tools/lab?path=accessible.ipynb

	Pixel mapping
	Project planning
	Simulations
	Flexible user tools

