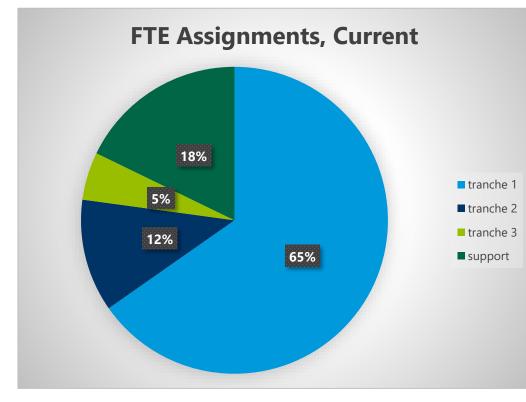
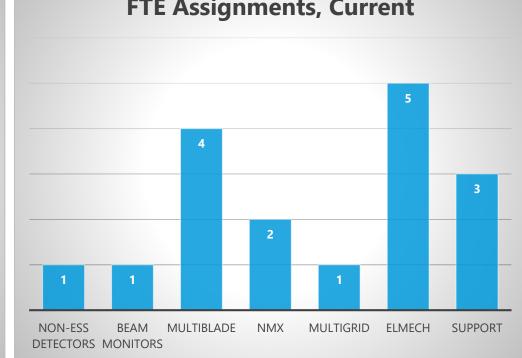


DMSC STAP

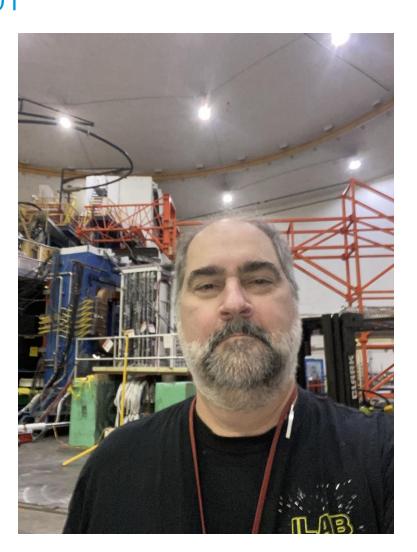
DetG Update


KEVIN FISSUM 2023-04-25


- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

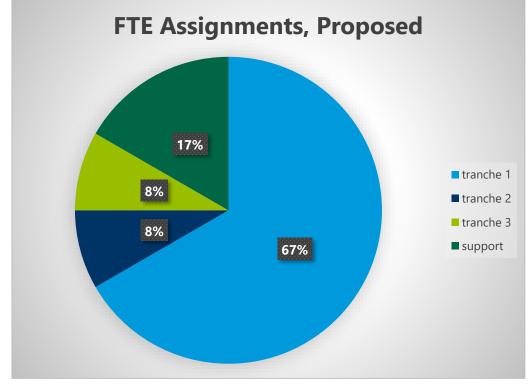
Status DetG 2023-04-25

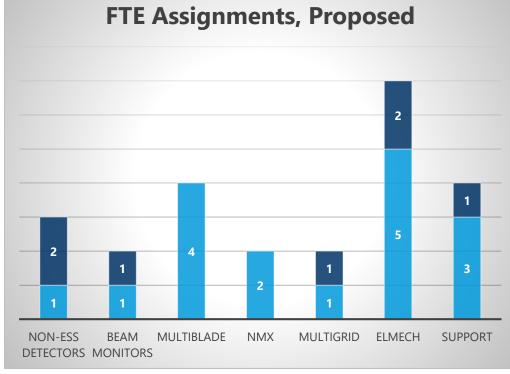


FTE Assignments, Current

Changes within the DetG Jack Segal, Technical Section Lead, 2023-06-01

- 30+ years ground-up experience with detector systems
- international profile built upon establishing Halls A and C at Jefferson Lab from a "green-swamp" site
- extensive detector-related technical skills: technician, technical coordinator, senior technical coordinator, engineering support manager
- skillset includes systematic diagnostics, reverse engineering, and demonstrated productivity under broadly stated objectives


Changes within the DetG As of 2023-05-01



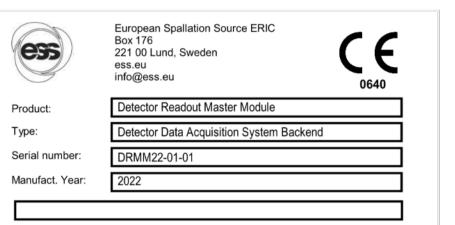
- Thomas Kittelmann to DMSC, Patrik Strindin end of contract, Ramsey Al Jebali on 6-month leave-of-absence
- Istvan Csakí (eplanning) back with us at 100%
- 4 entry level scientists (adverts live):
- beam monitors ESD-29782
- boron-10 based detectors ESD-29828 (envisioned TREX support)
- installation and commissioning ESD-29829
- signal processing ESD-29830
- 1 Detector Laboratory Workshop Technician ESD-26226 (live)
- 1 Mechanical Technician (approved)
- 3 summer students (likely approved this week)
- dimensioning for He-3 underway (envisioned CSPEC support)

Status DetG

Reorganizing...

- Coatings Lab Linköping: moving to site B02 (midsummer), will require access to LU NanoLab to ensure quality of coatings in the future. Losing 200 m².
- E04: borrowed by Motion Control, future of room uncertain. Losing 50 m².
- Utgård: we will lose this space at the end of 2025, we will likely need a year to plan a transition somewhere. Losing 800 m².
- request for annexes: for 12 X 12 m² on the Long Instrument Hall and 8 X 8 m² annex on the Short Instrument Hall (D04?), both radiation hardened. Potentially adding 200 m². Essential for CSPEC.
- Source-Testing Facility: budget approved by CCB and contract underway, access to neutron sources at LU guaranteed – huge step forward. Gaining 400 m².
- net loss of workspace: 400 m². Net loss of time to relocate? Where to relocate?

- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary


- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

RMM CDR (and CE) completed

Documentation...

Gaining momentum...

courtesy ePlan designer Istvan Csaki

Utgård 2023-03-06 (LOKI)

	MASTER RACK 1	
42U 2	2000H x 800W x 1200D (mm)	
U	Description	
1	Network Copper/Fibre Hub	
1		
1		
1	fiber patch panel rings	
1		
1	MASTER Module	
1	in sterritodale	
1	_	
1	Free	
1		
	Free	
1	Free Free	
1	Free	
1	Monitor /keyboard	
1		
1	PC (moved as VM)	
1	Free	
2	Rack/Detector Monitoring	
1	Free	
8	Wiener MPOD	
	(LV and HV)	
1	Free	
1	Free	
1	rice	
6	UPS	

	Assister RACK 1		
4011.00			
	42U 2000H x 800W x 1200D (mm)		
U	Description		
1	Fibre Hub		
1	Free KC705		
1	KC705		
1	Free		
1	KC705		
1	KC705		
1	Free		
1	KC705		
1	KCZOF		
1	KC705		
1	Free		
1	КС705		
1	KC705		
1	Free		
1	Free KC705		
1	KC705		
1	Free		
1	KC705		
1	KC705		
1	Free		
1	KC705		
1	KC705		
1	Free		
1	KC705		
1	КС705		
1	Free		
1	KC705		
1	KC705		
1	Free Free		
1	KC705		
1	KC705		
1	Free		
1	KC705		
1	KC705		
1	Free		
1	KC705		
1	KC705		
1	Free		
1	KC705		
1	KC705		

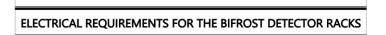
NMX Detector rack layout

ISO

Gaining momentum...

- Focus is on the 5 LOKI detector racks, BIFROST is next
 - Documentation necessary to allow the eplanning by the CEP team is underway
 - Testing the assembly and cabling of LOKI slave rack 1 ongoing in Utgård.

Document Type	Requirement Specificat
Document Number	ESS-4969251
Date	Apr 13, 2023
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal
Page	1 (21)



ELECTRICAL REQUIREMENT SPECIFICATIONS FOR THE LOKI DETECTOR RACKS

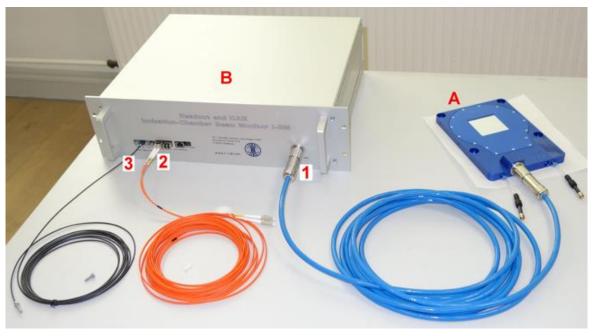
	Name	Role/Title
Owner	Irina Stefanescu	Detector Scientist, Detector Group
Author	Irina Stefanescu	Detector Scientist, Detector Group
Reviewer	Kevin <u>Eissum</u> Clara Lopez Istvan <u>Csaki</u>	Group Leader, Detector Group LOKI integration engineer Electrical and I&C Engineering Group
Approver	Stuart Birch	Senior Engineer, NSS Technical Groups

EUROPEAN SPALLATION SOURCE

Document Type	Requirement Specification
Document Number	ESS-4970501
Date	Apr 21, 2023
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal
Page	1 (5)

	Name	Role/Title
Owner	Irina Stefanescu	Detector Scientist, Detector Group
Author	Irina Stefanescu	Detector Scientist, Detector Group
Reviewer	Kevin <u>Fissum</u> Rasmus Toft-Petersen Liam Whitelegg Istvan <u>Csaki</u>	Group Leader, Detector Group BIFROST Instrument scientist, ESS BIFROST lead engineer, ESS Electrical and I&C Engineering Group
Approver	Stuart Birch	Senior Engineer, NSS Technical Groups

Racks LOKI slave

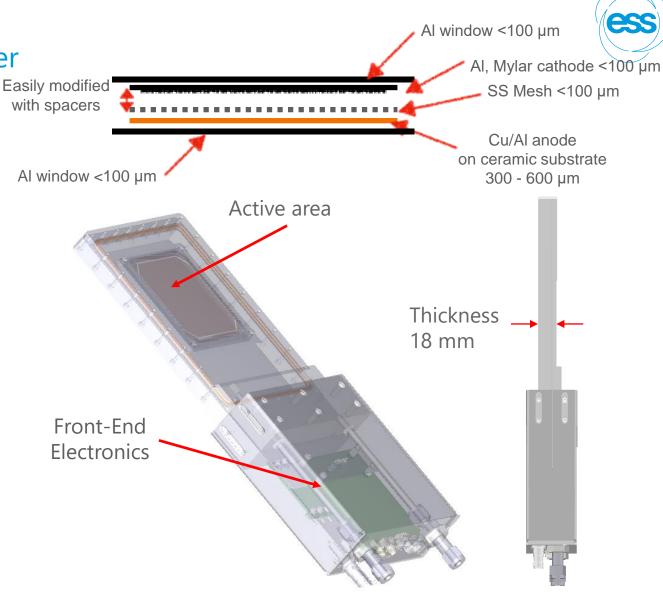

Status

- Dialog with instrument scientists established
- Thorough review of BM requirements performed
- A long list of special BM requirements determined
- Radiation hardness
- Large dynamic range
- Time resolution
- 0D, 1D, 2D position resolution
- In-vacuum operation
- Very low attenuation
- Plan set: identify a bare minimum of very well-established technologies that satisfy the needs of as many monitoring points as possible
- then move on to (special) and (special, special) cases

Candidates (subset), in bunker

CDT Ionization Beam Monitor

- Compensation ionization chamber for gamma-ray discrimination
- Long purpose-made cable to connect monitor and amplifier outside of high radiation fields, avoid crossing grounding zones
- Large dynamic range, current-mode operation
- Low material budget for low beam attenuation
- Developed by ESS/CDT as an in-bunker monitor solution, ESS DAQ compatible

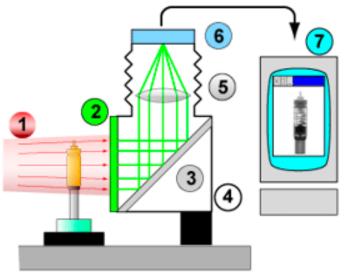


Candidates (subset), out-of-bunker

Micromegas

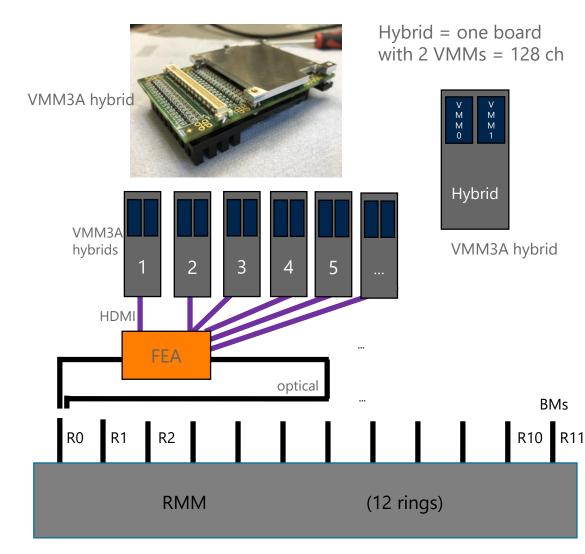
- developed at CEA Saclay, technology in use at ESS, nBLM
- adaptable from single event to 10⁹ n·cm⁻²s⁻¹ via current mode
- 0D, 1D, 2D capable with reasonable rate capabilities and position resolutions
- form factor modifications, window changes, and gas variations will enable use at more challenging monitoring points

L. Segui et al., 2023 JINST 18 P01013 DOI 10.1088/1748-0221/18/01/P01013


Candidates (subset), downstream of sample

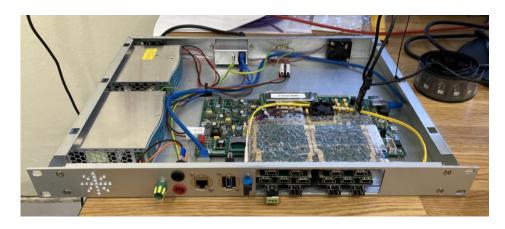
Cameras for transmission monitoring

- Off-the-shelf solution based on established, cost-effective technology
- Covers the needs of most instruments
- Pool being created by DetG to provide the service
- 2 cameras in present inventory
- More to be purchased
- Ongoing discussions with instrument scientists

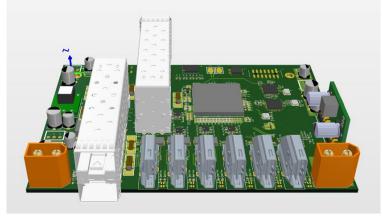


- 1. Point source of neutrons
- 2. Neutron to light converter
- 3. First surface mirror (45 degree)
- 4. Light tight box
- 5. Standard camera lens
- 6. Peltier cooled CCD chip
- 7. Computer

- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

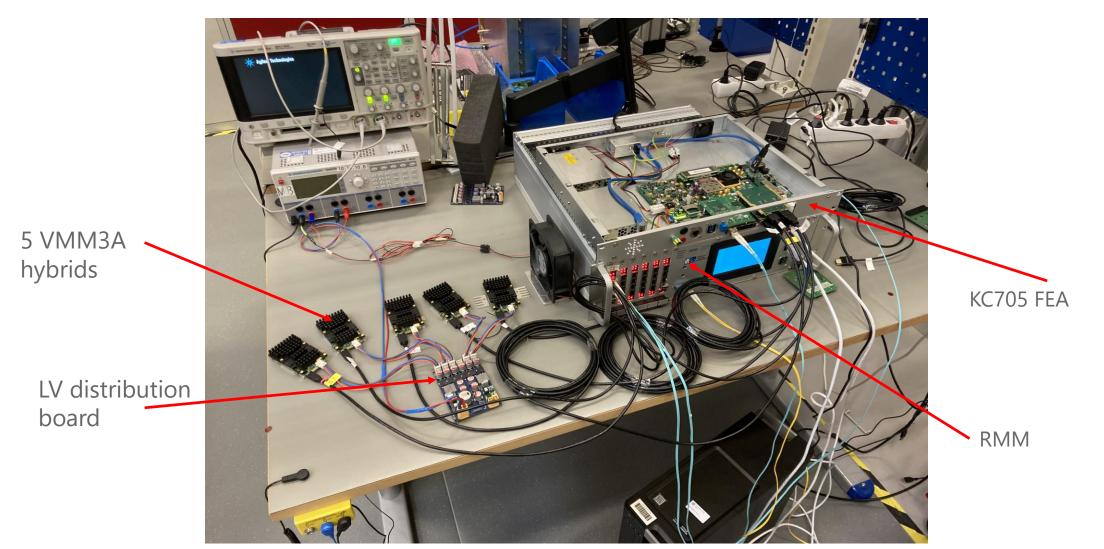

- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

Readout chain TBL, ESTIA, FREIA, NMX, TREX



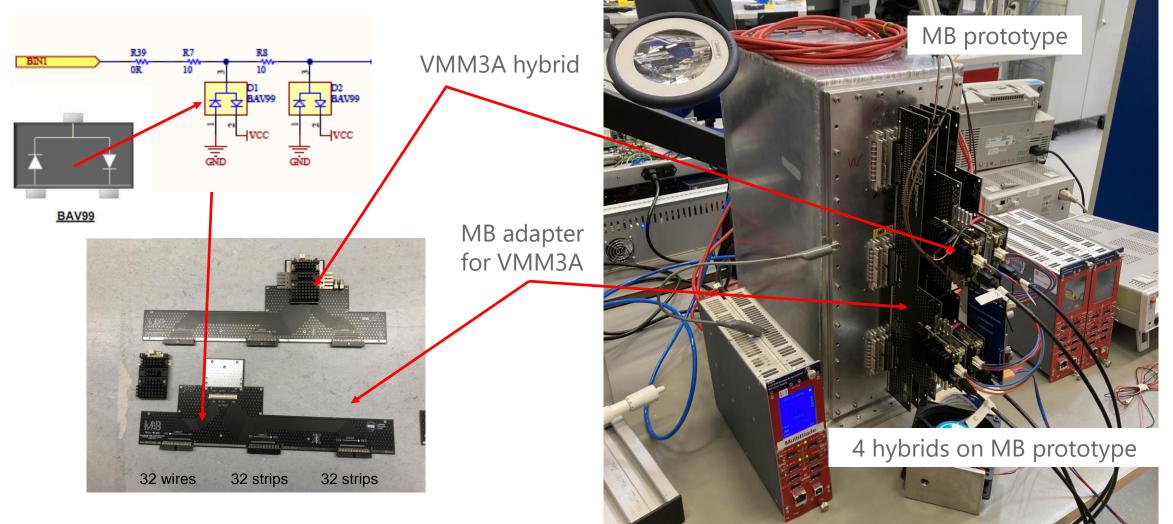
ess

- 2 versions of the FEA under development:
- KC705 1U crate (1 FEA can read 5 or 10 hybrids)



• Mini-Assister (1 FEA can read 6 hybrids)

Readout chain TBL, ESTIA, FREIA, NMX, TREX



MultiBlade, MultiGrid

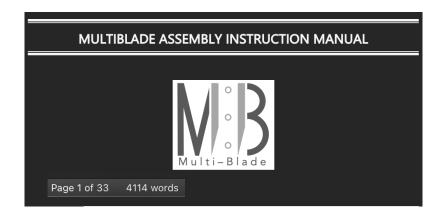
Protective circuit for VMM3A ASICS

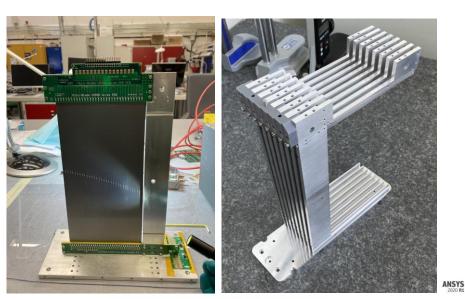
MultiBlade

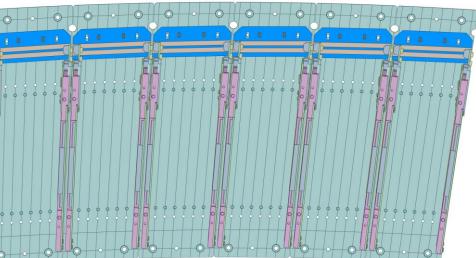
Construction underway

On-going production of 150 blades for ESTIA (48), FREIA (32), TBL (14) plus spares for MultiBlade detectors

- 150 blades coated with ${}^{10}B_4C$
- 118 of 150 frames delivered
- 70 blades are assembled, 60 blades are being wired at CDT, 10 are wired
- Storage, testing, and shipment equipment is in place
- ESTIA and TBL detector vessels final design nearly finished

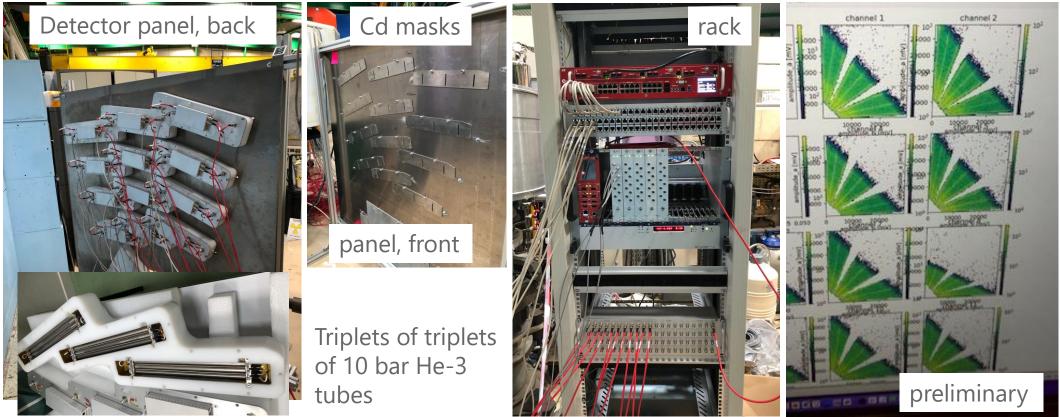





MultiBlade

Construction underway

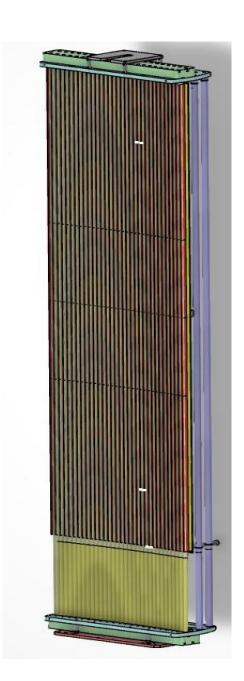
- TBL and ESTIA internal mechanics are under production
- First sector for the ESTIA detector has been produced in Utgård
- Sectors are electrically and mechanically independent
- Blades are arranged around the sample at a 4 m radius with spacing 0.15°
- Documentation for CDR in preparation

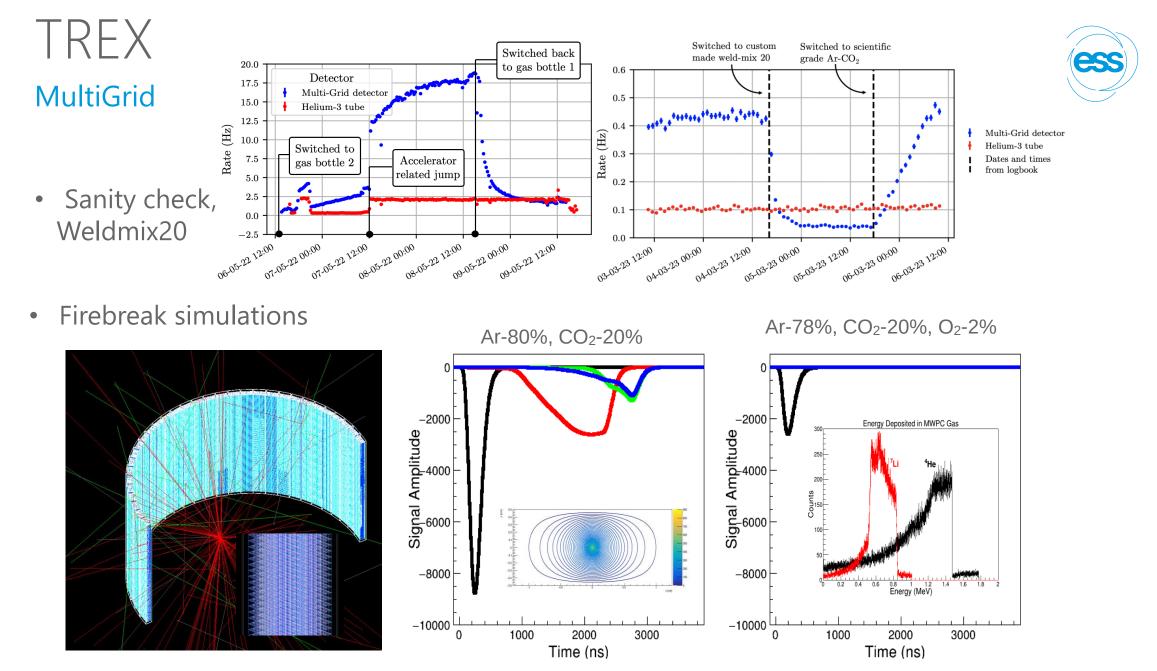


BIFROST

v16 2023, white spectra

• Unintegrated BIFROST detector test with a 37 GBq Am/Be source at CEA Saclay.





CSPEC

He-3 solution

- Proposed ILL MultiTube solution is stabilizing
 - Favorable construction window from ILL side
 - "No" risk associated with the modules
 - Trickledown into BMs
- IN5ish device to be provided
 - Includes the preamps
 - Add the standard CAEN 5560 digitizer system
- Scrutiny of the proposed costing has commenced
 - To be referenced against the existing CSPEC plan
 - He-3 is a driver, how many modules?
 - resulting CR should be a one-time event
- Approaches:
 - Plan A (all in), Plan B (absolute minimum)
 - Significant non-existing unplanned onsite support infrastructure (12 X 12 m² annex) required

- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

- 1. Changes within the DetG
- 2. Instrument-common efforts
- 3. Detector-related projects
- 4. Summary

Summary

- DetG bent during 2022, perhaps came close to breaking
- Substantial personnel emigration
- MultiGrid situation at ISIS
- BM emergency
- Personnel situation still in flux, but the derivative is now positive
- Detector technologies:
- MultiBlade is the onsite DetG R&D flagship
- NMX is the offsite DetG R&D flagship
- Solutions for CSPEC and TREX are in the works
- Non-ESS detectors are starting to land
- Buckle up!

