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Some things to discuss today

*What for? Both extracting texture in analysis vs. general simulation models.

* Types: Simple models (March-Dollase) vs. full ODF based. For the latter, there is a question of smooth models
(expansion in spherical harmonics) versus non-smooth. In all cases, there is the issue of input data formats.

* For simulations | can see the use for both full ODF as well as simpler models.

*In particular, it would be nice to have some simple go-to models, that can be used to add simple texture to a
general simulation (e.g. “rolled aluminium for entrance windows”). Does it make sense to have a bunch of
standard models, like fibre / plates, rolled sheet metal, ...? With some sort of “cook book” recipes, that could
be used to add some realism to a simulation (or at least gauge the importance of texture on a give figure of
merit).

*For all use-cases | can see that computational speed becomes a challenge.

*Then there is the question of who / what / when. But it might be enough if we simply end today with a clear
understanding of the issues, and perhaps with some ideas for next (baby) steps.

* For the rest of my slides | will go through some details of the current “texture” models in NCrystal, namely the
single crystal models. They share a lot of the same issues as texture models (indeed, are a specific class of
ODF), so might highlight strategies and challenges.
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Experience with current “texture” models in NCrystal:

Single crystals! (cf.

z Contribution of single planeis integral &
along red curve.

X

Single crystal with

isotropic gaussian mosaicity. Layered crystal (a.k.a. PG,

Analytical formula for non-backscattering a.k.a. rotated single crystal)

and low mosaicity, otherwise needs Always needs numerical integration,
numerical integration. High chance for a given plane to contribute.
Low chance for a given plane to contribute.



https://doi.org/10.1016/j.cpc.2021.108082

Normal single crystal with Gaussian mosaicity

uses cheap pre-check to speed up:

double NC::GaussMos::calcCrossSections( InteractionPars& 1ip, o 5 o
const NC::Vector& indir, This function gives xsect for

const std::vector<NC::Vector>& deminormals,

Vecioa xe comun y conce et et || planes with a given d-spacing
nc_assert(ip.isValid()&&ip.m_wl>0); (Only Ca“ed |f d-SpaCing < )\/2)

nc_assert(indir.isUnitVector());
std::vector<Vector>::const_iterator it(deminormals.begin()), itE(deminormals.end());
double xsoffset = xs_commul.empty() ? 0.0 : xs_commul.back();
double xssum(0.0);

const double cptsq = ip.m_cos_perfect_theta_sq;

R bt LU o) Must check all normals in group.

const Vector& normal = *it;

const double dot = normal.dot(indir);
double sdotcptsq = (1.0 - dot * dot)*cptsq;
double ds = dot * ip.m_sin_perfect_theta;

//First a combined check, which usually allows us to skip both normal and PreCheCk allOWS mOSt

//anti-normal:

o Bt R il 0 planes to be skipped since
they do not contribute.

continue;

//At least one of the two normals should contribute, so deal with them:
double Am = namax( 0.0, cta - ds );
if ( sdotcptsf] > Am*Am ) { . B
//anti-normal is within truncated Gauss PreCISe evaluatlon Of the nOn-ZerO
double xs = calcRawCrossSectionValue(ip, dot );
if (xs) { 1 1 1 1
xs_commul.push_back(xsoffset + (xssum += xs)); ContrlbUtlon 1S Stl“ Where mOSt
cache.emplace_back(-normal, ip.m_inv2dsp);

. time is spent, even when only very
IFC sdorcton = kprip ) B o— | few planes survives the cheap

//normal is within truncated Gauss

double xs = calcRawCrossSectionvalue(ip, -dot );

oy pre-check!
xs_commul.push_back(xsoffset + (xssum += xs));
cache.emplace_back(normal, ip.m_1inv2dsp);

. Time to sample interactions is
) much less crucial, since it mostly

return xssum;

) deals with only a single plane.




Single Crystals with Gaussian mosaicity NCrystal

Can model monochromators, analysers, filters, samples X. X. Cai & T. Kittelmann

1

‘ The tricky part* is the integration of mosaic ‘

density along circle of Bragg condition.

*: Once contributing normals
Have been identified.




Single Crystals with Gaussian mosaicity NCrystal

Can model monochromators, analysers, filters, samples X. X. Cai & T. Kittelmann
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The tricky part* is the integration of mosaic
density along circle of Bragg condition.

*: Once contributing normals
Have been identified.

Simple closed-form approx.

valid for small mosaicity
ex ——(5 /0'2] X erf — % bma
p[~2% 2 é sin 7y 1/ 27‘02

(and not backscattermg)
% = la =1 Improved form extends validity

n to much larger mosaicities

O'Bragg(aa a’) Q X




Single Crystals with Gaussian mosaicity

Can model monochromators, analysers, filters, samples

NCrystal

X. X. Cai & T. Kittelmann

UITLY SER

Z

1500
é 1000
9 10

The tricky part* is the integration of mosaic |

density along circle of Bragg condition.

¢
*: Once contributing normals : y

Have been identified. u

Simple closed-form approx.

valid for small mosaicity 0
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Improved form extends validity
to much larger mosaicities

Code automatically picks
appropriate method




Depending on use-case, the attention to detail in the single

crystal model might be crucial.

Analytical approximation (Sears, 1997)

Gcrmanium—.511

~ 4° mosaicity (FWHM) o Monte Carlo (Wuttke, 2014)
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PG : Off-axis planes are complicated and expensive to deal

with. Likely similar to general texture models.
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Lots of planes to consider at shorter d-spacing!

108
Y203 (5206, Ytr. oxide)
= Al203 (sgl67, Corundum)
(1] SO
X == Rb (52229)

# planes above cutoff

==== (Ca (5g225) Al (sg225)
— S (3g227) Y (sg194)
=1 Ba (5£220) Pt (sg225)

===s Ph (32225)

— 502 (3g154, Quartz)
==+ Sn (sgldl)

BeF2 (sgl52, Be. flouride)
Ca (52229, y-calcium)

Na (sg229)

Cu20 (sg224, Cuprite)
MgO (sp225, Periclase)
Ag (s4225)

Au (5g225)

Pd (sg225)
Se (sg194)
Cu (sg225)
Mg (sg194)
Zr (sg19d)
C (sg227, Diamond)
Ni (sg225)
Nb (5g229)
Ti (sg194)
C (sg194, Pyr. graphite)
W (55229)
Zn (sg194)
=== Mo (5g229)
.V (55229)
w===  Fe (sg229, 3-iron)
s e (52229, a-iron)
== Cr (5g229)
Be (sg194)

d-spacing cutoff (A)




The ‘“sccutoff’’ parameter: Planes with dspacing smaller

than this are moved to a powder model. Default is 0.4A.
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CPU speed.

10_2 T T T ! |
S “ragg (layered single crystal, 1’ mos., e = 1073)
e sccutoff=0.4A by default agg (layered single crystal, 3° mos., e = 1073)
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107° ESE=: .". """"""""""""" ——— Bragg (single crystal, 1’ mos., € = 10‘3)
"‘:,‘ // ——— Bragg (single crystal, 3° mos., € = 1073)

——— Bragg (single crystal, 3° mos., ¢ = 107°)
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o Including scattering event sampling (worst case)
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This is likely indicative of
texture models (they
might be worse!)!

= Baseline

e
=
&

-
Sl
=1
1

Time per cross section evaluation (s)

10—8 .......................... r.__‘

10—9 ......... O A0 o S A, ) YO O O O 8 O { O O, O, O 1 0 | | ......... O O L

Neutron wavelength (A)

[
!




Technical check for consistency

of Single Crystals codes (must also hold for any texture model!!

In principle an isotropically illuminated
single crystal should on average give
powder-like cross-sections.

In practice, a lot of edge-cases and
details have to be treated correctly in
the SC code before this happens!

Another check is that consistent SC
codes should provide “zig-zag walk”
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Al203 (sg167, Corundum)

1° mosaicity, 10° samples per point

Powdered crystal

®  Single crystal (isotropic average)

s a2

0 1 2 3 4 5 6 7 8
Neutron wavelength (A)
Thanks to the DMSC cluster for help

with this brute force validation.
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