

Lecture 7 Neutron Scattering Basics

October 2023

Francesco Piscitelli

Outline

WHY NEUTRONS

ELASTIC VS INELASTIC

COHERENT VS INCOHERENT

CONTRAST MATCHING – an example

Outline

Coherent	Incoherent
Elastic	Inelastic

WHY NEUTRONS

Energy classification	
slow (cold)	0-0.005 eV
thermal	$0.005 \operatorname{-} 0.5~\mathrm{eV}$
epithermal	$0.5 \operatorname{-} 1000~\mathrm{eV}$
intermediate	1 - 100 KeV
fast	$0.1 \operatorname{-} 10~\mathrm{MeV}$

Energy classification of neutrons

Why neutrons

Wavelength similar to distances in condensed matter

Energy similar to many excitations in solids and liquids:

- Molecular vibrations
- Lattice modes
- Atomic dynamics

NOTE: X-rays for same wavelengths have keV energy so not suitable for these excitations

Neutrons' interactions

Why neutrons

ĽŠŠ

 $\mathsf{d}\Omega$

Q-E equation

$$Q^{2} = k_{i}^{2} \left(1 + \left(1 - \frac{\omega}{E_{i}} \right) - 2 \cos 2\theta \sqrt{1 - \frac{\omega}{E_{i}}} \right)$$

Q is a function of the energy transfer!

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.0 w (eV)

Momentum and Energy transfer

$$|\bar{Q}| = p_{fin} - p_{in} = 2m\nu$$

ELASTIC \rightarrow *vin* = *vout*

Momentum and Energy transfer

INELASTIC \rightarrow vin \neq vout

INSTRUMENTS

NEUTRON SCATTERING SPECTROSCOPY DIFFRACTION WHERE THEY ARE AND HOW THEY MOVE WHERE THEY ARE DIFFRACTION LSS INDIRECT **SPIN-ECHO** DIRECT Fix Ei Spin precession Fix Ef DREAM REFL SANS **ESTIA BIFROST** LOKI **CSPEC**

NOTE

A detector has to give us information about the *single* neutron (not always!):

"Where" (diffraction) (1D, 2D) (Q)

"Where and when" (spectroscopy)(Q,E)

Note: ToF is needed in both diffraction and spectroscopy

• Spectroscopy: $I(\theta,T) \propto S(\underline{Q},\omega)$ with $Q = f(\theta, \lambda_i, \lambda_f)$, $\omega = \omega_i - \omega_f$

Diffraction:

$$I(\theta,T) \propto \int_{-\infty}^{+\infty} S(Q,\omega) = S(Q)$$
 with $Q_{el} = (4\pi / \lambda_i) \operatorname{sen}(\theta/2)$

COHERENT \bigvee IN(())HFRFNT

Scattering by a SINGLE nucleus

$$E = \frac{1}{2}mv^2 = k_B T = \frac{h^2}{2m\lambda^2} = \frac{\hbar^2 k^2}{2m} = \hbar\omega \qquad \lambda = \frac{h}{mv} \qquad k = \frac{2\pi}{\lambda}$$

Scattering by a SINGLE nucleus

Scattering by a SINGLE nucleus

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r}) \end{bmatrix} \Psi = E\Psi \qquad \text{Schrodinger}$$
$$\Psi_{(\bar{r} \to \infty)} \sim e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r} \qquad \text{Solution}$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r}) \end{bmatrix} \Psi = E\Psi \qquad \text{Schrodinger}$$

$$\Psi_{(\bar{r} \to \infty)} \sim e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r} \qquad \text{Solution}$$

$$\bar{J}(\bar{r}, t) = -\frac{i\hbar}{2m} \left(\Psi^* \frac{d\Psi}{d\bar{r}} - \Psi \frac{d\Psi^*}{d\bar{r}} \right) \qquad \text{Probability current}$$

$$\bar{J}_i = \frac{\hbar k}{m} \hat{u}_z, \qquad \bar{J}_s = \frac{\hbar k}{m} \frac{1}{r^2} |f(\theta, \phi)|^2 \hat{u}_r$$

$$d\sigma = \frac{\frac{\hbar k}{m} \frac{1}{r^2} |f(\theta, \phi)|^2 r^2 d\Omega}{\frac{\hbar k}{m}} = |f(\theta, \phi)|^2 d\Omega \quad \Rightarrow \quad \frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r}) \end{bmatrix} \Psi = E\Psi \qquad \text{Schrodinger}$$

$$\Psi_{(\bar{r} \to \infty)} \sim e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r} \qquad \text{Solution}$$

$$\bar{J}(\bar{r}, t) = -\frac{i\hbar}{2m} \left(\Psi^* \frac{d\Psi}{d\bar{r}} - \Psi \frac{d\Psi^*}{d\bar{r}} \right) \qquad \text{Probability current}$$

$$\bar{J}_i = \frac{\hbar k}{m} \hat{u}_z, \qquad \bar{J}_s = \frac{\hbar k}{m} \frac{1}{r^2} |f(\theta, \phi)|^2 \hat{u}_r$$

$$d\sigma = \frac{\frac{\hbar k}{m} \frac{1}{r^2} |f(\theta, \phi)|^2 r^2 d\Omega}{\frac{\hbar k}{m}} = |f(\theta, \phi)|^2 d\Omega \quad \Rightarrow \quad \frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2$$

Thermal neutron cannot change the internal energy of the nucleus $E = 25meV \longrightarrow k_f = k_i = k$

Single neutron to single nucleus scattering IS ELASTIC

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\bar{r}) \end{bmatrix} \Psi = E\Psi \qquad \text{Schrodinger}$$

$$\Psi_{(\bar{r} \to \infty)} \sim e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r} \qquad \text{Solution}$$

$$\bar{J}(\bar{r}, t) = -\frac{i\hbar}{2m} \left(\Psi^* \frac{d\Psi}{d\bar{r}} - \Psi \frac{d\Psi^*}{d\bar{r}} \right) \qquad \text{Probability current}$$

$$\bar{J}_i = \frac{\hbar k}{m} \hat{u}_z, \qquad \bar{J}_s = \frac{\hbar k}{m} \frac{1}{r^2} |f(\theta, \phi)|^2 \hat{u}_r$$

$$d\sigma = \frac{\frac{\hbar k}{m} \frac{1}{r^2} |f(\theta, \phi)|^2 r^2 d\Omega}{\frac{\hbar k}{m}} = |f(\theta, \phi)|^2 d\Omega \quad \Rightarrow \quad \frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2$$

$$E = \frac{1}{2}mv^{2} = k_{B}T = \frac{h^{2}}{2m\lambda^{2}} = \frac{\hbar^{2}k^{2}}{2m} = \hbar\omega \qquad \lambda = \frac{h}{mv} \qquad k = \frac{2\pi}{\lambda}$$
Thermal neutron cannot change the internal energy of the nucleus
$$E = 25meV \longrightarrow k_{f} = k_{i} = k$$
Single neutron to single nucleus scattering IS ELASTIC
$$f(\theta, \varphi) \qquad \text{Means that the scattering depends on the direction! BUT...}$$

$$e^{ikz} = \sum_{l=0}^{\infty} i^{l}\sqrt{4\pi (2l+1)}j_{l}(kr)Y_{l}^{0}(\theta)$$
Bessel funct
Spherical harmonics
$$(\psi = \psi = \psi)$$

$$(\psi = \psi)$$

$$(\psi = \psi)$$

$$(\psi = \psi)$$

<u>Scattering by a SINGLE nucleus</u> Fermi pseudo-potential

<u>Scattering by a SINGLE nucleus</u> Fermi pseudo-potential

$$V(\bar{r}) = a \,\delta(\bar{r}) \longrightarrow V(\bar{r}) = \frac{2\pi\hbar^2}{m_n} \,b\,\delta(\bar{r})$$

 $\sigma_{tot} = 4\pi |b|^2$

Scattering by a SINGLE nucleus Fermi pseudo-potential

 $\sigma_{tot} = 4\pi |b|^2$

 $-b\frac{e^{ikz}}{r} \longrightarrow b > 0 \longrightarrow \text{repulsive}$ b < 0 \longrightarrow attractive Or scattered wave in phase or out of phase with incoming wave

b is independent from the neutron Energy

b is in general a complex quantity b = b' - ib'' $\sigma_{tot} = 4\pi |b|^2$ $\sigma_{abs} = \frac{4\pi}{k} Im\{b\}$

b is independent from the neutron Energy

b is in general a complex quantity b = b' - ib'' $\sigma_{tot} = 4\pi |b|^2$ $\sigma_{abs} = \frac{4\pi}{k} Im\{b\}$ b depends on the neutron-nucleus system spin state (combined spin $I - \frac{1}{2}$ or $I + \frac{1}{2}$),

NOTE: we do the math for no exchange of energy

Scattering by a MANY nuclei Even from the same type !!! Ve

Very simplified math! Just enough to understand the principle.

Scattering by a MANY nuclei Even from the same type !!! Very simplifi

Very simplified math! Just enough to understand the principle.

Assuming $r >> R_i$

$$\frac{d\sigma}{d\Omega} \propto |\psi|^2 = \sum_{i,j} b_i b_j e^{i(k_0 - k')(R_i - R_j)} = \sum_{i,j} b_i b_j e^{-iQ(R_i - R_j)}$$

Momentum transfer

$$Q = k' - k_0$$

Note: N = number of atoms in scattering system

Scattering by a MANY nuclei Even from the same type !!! Very simplified

Assuming $r >> R_i$

i = j

$$\frac{d\sigma}{d\Omega} \propto |\psi|^2 = \sum_{i,j} b_i b_j e^{i(k_0 - k')(R_i - R_j)} = \sum_{i,j} b_i b_j e^{-iQ(R_i - R_j)}$$

i = j

Momentum transfer

$$\boldsymbol{Q} = \boldsymbol{k}' - \boldsymbol{k}_0$$

Note: N = number of atoms in scattering system

$$= \sum_{i=j}^{\infty} b_i b_j e^{-iQ(R_i - R_j)} + \sum_{i \neq j}^{\infty} b_i b_j e^{-iQ(R_i - R_j)} = \dots = (\langle b^2 \rangle - \langle b \rangle^2) N + \langle b \rangle^2 \sum_{i \neq j}^{\infty} e^{-iQ(R_i - R_j)}$$
$$= \sum_{i=j}^{\infty} b_i b_i e^{-iQ(R_i - R_i)}$$
$$= \sum b_i b_i e^0 = \sum b_i b_i 1$$

Scattering by a MANY nuclei Even from the same type !!! Very simplifi

Scattering by a MANY nuclei Even from the same type !!!ery simplified math! Just enough to understand the princip

$$= \sum_{i=j} b_i b_j e^{-iQ(R_i - R_j)} + \sum_{i \neq j} b_i b_j e^{-iQ(R_i - R_j)} = \dots = (\langle b^2 \rangle - \langle b \rangle^2) N + \langle b \rangle^2 \sum_{i \neq j} e^{-iQ(R_i - R_j)}$$

Incoherent Scattering
Uniform in all directions
$$\sigma_i = 4\pi (\langle b^2 \rangle - \langle b \rangle^2) = (4\pi |b_i|^2)$$

Coherent Scattering
Depends on the direction of Q
$$\sigma_c = 4\pi \langle b \rangle^2 = (4\pi |b_c|^2)$$

$$\sigma_{abs} = \frac{4\pi}{k} Im\{b\}$$

Scattering by a MANY nuclei Even from the same type !!!ery simplified math! Just enough to understand the princip

Scattering by a MANY nuclei

$$\frac{d\sigma}{d\Omega} \propto (\langle b^2 \rangle - \langle b \rangle^2) N + \langle b \rangle^2 \sum_{i \neq j} e^{-iQ(R_i - R_j)}$$
Incoherent Scattering
Uniform in all directions

$$\sigma_i = 4\pi (\langle b^2 \rangle - \langle b \rangle^2) = 4\pi |b_i|^2 \qquad \sigma_c = 4\pi \langle b \rangle^2 = 4\pi |b_c|^2$$

$$\sigma_{tot} = \sigma_c + \sigma_i = 4\pi |b|^2 \qquad \sigma_{abs} = \frac{4\pi}{k} Im\{b\}$$

	Ζ	Α	$I(\pi)$	c	<i>b</i>	b _i	σ	σ,	σ,	σ	
ł	1				-3.7390(11)		1.7568(10)	80.26(6)	82.02(6)	0.3326(7)	
		1	1/2(+)	99.985	-3.7406(11)	25.274(9)	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)	
		2	1(+)	0.015	6.671(4)	4.04(3)	5.592(7)	2.05(3)	7.64(3)	0.000519(7)	
		3	1/2(+)	(12.32 a)	4.792(27)	-1.04(17)	2.89(3)	0.14(4)	3.03(5)	0	
le	2				3.26(3)		1.34(2)	0	1.34(2)	0.00747(1)	
		3	1/2(+)	0.00014	5.74(7)	-2.5(6)	4.42(10)	1.6(4)	6.0(4)	5333.(7.)	
	_				-1.483(2) <i>i</i>	+2.568(3)i					
		4	0(+)	99.99986	3.26(3)	0	1.34(2)	0	1.34(2)	0	
j	3				1.90(2)		0.454(10)	0.92(3)	1.37(3)	70.5(3)	
		6	1(+)	7.5	2.00(11)	-1.89(10)	0.51(5)	0.46(5)	0.97(7)	940.(4.)	
					-0.261(1)/	+0.26(1)/					
		7	3/2(-)	92.5	-2.22(2)	-2.49(5)	0.619(11)	0.78(3)	1.40(3)	0.0454(3)	
Be	4	9	3/2()	100	7.79(1)	0.12(3)	7.63(2)	0.0018(9)	7.63(2)	0.0076(8)	
3	5				5.30(4)		3.54(5)	1.70(12)	5.24(11)	767.(8.)	
					0.213(2) <i>i</i>						
		10	3(+)	20.0	-0.1(3)	-4.7(3)	0.144(8)	3.0(4)	3.1(4)	3835.(9.)	
					-1.066(3) <i>i</i>	+1.231(3) <i>i</i>					
		11	3/2()	80.0	6.65(4)	-1.3(2)	5.56(7)	0.21(7)	5.77(10)	0.0055(33)	

ILL blue book

ZSymbA	p or T _{1/2}	Ι	b _c	b+	b.	c	σcoh	σine	σscatt	σabs	_		
0-N-1	10.3 MIN	1/2	-37.0(6)	0	-37.0(6)		43.01(2)		43.01(2)	0	-		
1-Н			-3.7409(11)				1.7568(10)	80.26(6)	82.02(6)	0.3326(7)			
1-H-1	99.985	1/2	-3.7423(12)	10.817(5)	-47.420(14)	+/-	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)			
1-H-2	0.0149	1	6.674(6)	9.53(3)	0.975(60)		5.592(7)	2.05(3)	7.64(3)	0.000519(7)			
1-H-3	12.26 Y	1/2	4.792(27)	4.18(15)	6.56(37)		2.89(3)	0.14(4)	3.03(5)	< 6.0E-6			
2-He			3.26(3)				1.34(2)	0	1.34(2)	0.00747(1)			
2-He-3	0.00013	1/2	5.74(7)	4.374(70)	9.835(77)	Е	4.42(10)	1.532(20)	6.0(4)	5333.0(7.0)	C		
2-He-4	0.99987	0	3.26(3)				1.34(2)	0	1.34(2)	0	26	ears	S
3-Li			-1.90(3)				0.454(10)	0.92(3)	1.37(3)	70.5(3)			
3-Li-6	7.5	1	2.0(1)	0.67(14)	4.67(17)	+/-	0.51(5)	0.46(5)	0.97(7)	940.0(4.0)	<u>Z</u>	A	I
3-Li-7	92.5	3/2	-2.22(2)	-4.15(6)	1.00(8)	+/-	0.619(11)	0.78(3)	1.40(3)	0.0454(3)	1	1	1
4-Be-9	100	3/2	7.79(1)				7.63(2)	0.0018(9)	7.63(2)	0.0076(8)		2 3	1
5-B			5.30(4)				3.54(5)	1.70(12)	5.24(11)	767.0(8.0)	2		
5-B-10	19.4	3	-0.2(4)	-4.2(4)	5.2(4)		0.144(6)	3.0(4)	3.1(4)	3835.0(9.0)		3	1
5-B-11	80.2	3/2	6.65(4)	5.6(3)	8.3(3)		5.56(7)	0.21(7)	5.77(10)	0.0055(33)		4	0
6-C			6.6484(13)				5.551(2)	0.001(4)	5.551(3)	0.00350(7)	3		
6-C-12	98.89	0	6.6535(14)				5.559(3)	0	5.559(3)	0.00353(7)		6	1
6-C-13	1.11	1/2	6.19(9)	5.6(5)	6.2(5)	+/-	4.81(14)	0.034(11)	4.84(14)	0.00137(4)		7	3
7-N			9.36(2)				11.01(5)	0.50(12)	11.51(11)	1.90(3)	4	9	3
7-N-14	99.635	1	9.37(2)	10.7(2)	6.2(3)		11.03(5)	0.50(12)	11.53(11)	1.91(3)	5		
7-N-15	0.365	1/2	6.44(3)	6.77(10)	6.21(10)		5.21(5)	0.00005(10)	5.21(5)	0.000024(8)		10	3
8-0			5.805(4)				4.232(6)	0.000(8)	4.232(6)	0.00019(2)		11	3
8-O-16	99.75	0	5.805(5)				4.232(6)	0	4.232(6)	0.00010(2)			
8-O-17	0.039	5/2	5.6(5)	5.52(20)	5.17(20)		4.20(22)	0.004(3)	4.20(22	0.236(10)			
8-O-18	0.208	0	5.84(7)				4.29(10)	0	4.29(10)	0.00016(1)			
9-F-19	100	1/2	5.654(12)	5.632(10)	5.767(10)	+/-	4.017(14)	0.0008(2)	4.018(14)	0.0096(5)			
10-Ne			4.566(6)				2.620(7)	0.008(9)	2.628(6)	0.039(4)			
10-Ne-20	90.5	0	4.631(6)				2.695(7)	0	2.695(7)	0.036(4)			
10-Ne-21	0.27	3/2	6.66(19)				5.6(3)	0.05(2)	5.7(3)	0.67(11)			
10-Ne-22	9.2	0	3.87(1)				1.88(1)	0	1.88(1)	0.046(6)			

Sears

Z	Α	<i>I</i> (π)	c	b _c	b _i	σ	σ	σ,	σα
1				-3.7390(11)		1.7568(10)	80.26(6)	82.02(6)	0.3326(7)
	1	1/2(+)	99.985	-3.7406(11)	25.274(9)	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)
	2	1(+)	0.015	6.671(4)	4.04(3)	5.592(7)	2.05(3)	7.64(3)	0.000519(7)
	3	1/2(+)	(12.32 a)	4.792(27)	-1.04(17)	2.89(3)	0.14(4)	3.03(5)	0
2				3.26(3)		1.34(2)	0	1.34(2)	0.00747(1)
	3	1/2(+)	0.00014	5.74(7) 1.483(2) <i>i</i>	-2.5(6) +2.568(3) <i>i</i>	4.42(10)	1.6(4)	6.0(4)	5333.(7.)
	4	0(+)	99.99986	3.26(3)	0	1.34(2)	0	1.34(2)	0
3				1.90(2)		0.454(10)	0.92(3)	1.37(3)	70.5(3)
	6	1(+)	7.5	2.00(11) -0.261(1)/	-1.89(10) +0.26(1)/	0.51(5)	0.46(5)	0.97(7)	940.(4.)
	7	3/2(-)	92.5	-2.22(2)	-2.49(5)	0.619(11)	0.78(3)	1.40(3)	0.0454(3)
4	9	3/2()	100	7.79(1)	0.12(3)	7.63(2)	0.0018(9)	7.63(2)	0.0076(8)
5				5.30(4) 0 213(2) <i>i</i>		3.54(5)	1.70(12)	5.24(11)	767.(8.)
	10	3(+)	20.0	-0.1(3) -1.066(3) <i>i</i>	-4.7(3) +1.231(3) <i>i</i>	0.144(8)	3.0(4)	3.1(4)	3835.(9.)
	11	3/2()	80.0	6.65(4)	-1.3(2)	5.56(7)	0.21(7)	5.77(10)	0.0055(33)

Scattering by a MANY nuclei: NOTE

 $\frac{d\sigma}{d\Omega} \propto \left(\langle b^2 \rangle - \langle b \rangle^2 \right) N + \langle b \rangle^2 \sum_{i}$ $e^{-iQ(R_i-R_j)}$ **/ _ _** i ≠ j Incoherent Scattering Coherent Scattering

GENERALIZATION

NOTE: we did the math for no exchange of energy

This is the math with energy exchange ...

$$\frac{d^{2}\sigma}{d\Omega dE} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l \neq j} b_{l} b_{j} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt$$

$$\frac{d^{2}\sigma}{d\Omega dE} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l \neq j} b_{l} b_{j} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt + \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l = j} b_{l} b_{j} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt + \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l \neq j} \langle b \rangle^{2} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt + \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l \neq j} \langle b \rangle^{2} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt + \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l = j} (\langle b^{2} \rangle - \langle b \rangle^{2}) \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt = \frac{coherent Scattering}{Depends on the direction of Q} Incoherent Scattering Uniform in all directions \sigma_{i} = 4\pi(\langle b^{2} \rangle - \langle b \rangle^{2}) = 4\pi|b_{i}|^{2}$$

$$\sum_{l \neq j} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle \sum_{l = j} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle$$

Same nucleus at different times, and correlation of different nuclei at different times -> interference

Correlation of Same nucleus at different times -> NO interference

$$\frac{d^{2}\sigma}{d\Omega dE} = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l \neq j} b_{l} b_{j} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt + \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l = j} b_{l} b_{j} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt = \\ = \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l \neq j} \langle b \rangle^{2} \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt + \frac{k_{f}}{k_{i}} \frac{1}{2\pi\hbar} \sum_{l = j} (\langle b^{2} \rangle - \langle b \rangle^{2}) \int_{-\infty}^{+\infty} \langle e^{-i\bar{Q}\cdot\bar{r}\bar{l}(0)} | e^{i\bar{Q}\cdot\bar{r}\bar{j}(t)} \rangle e^{-i\omega t} dt = \\ \frac{diff}{d\sigma} \frac{d\sigma}{d\Omega} = \int_{0}^{\infty} \left(\frac{d^{2}\sigma}{d\Omega dE_{1}} \right) dE_{1}$$

$$\sigma_{\text{tot}} = \int_{4\pi}^{\infty} \left(\frac{d\sigma}{d\Omega} \right) d\Omega$$

$$\frac{d\sigma}{d\Omega} \propto (\langle b^{2} \rangle - \langle b \rangle^{2}) N + \langle b \rangle^{2} \sum_{i \neq j} e^{-iQ(R_{i}-R_{j})}$$

$$MHMMSHED$$

$$\frac{\sigma}{D} \propto |\psi|^2 = \sum_{i,j} b_i b_j e^{i(k_0 - k_l)(R_i - R_j)} = \sum_{i,j} b_i b_j e^{-iQ(R_i - R_j)} \qquad Q = k' - k_0$$

 $E = \hbar w = E_i - E_f$

CONTRAST MATCHING

Contrast Matching

Isotopic substitution – Reflectometry example

x-rays neutrons ¹ H ² H(D)										
ZSymbA	p or T _{1/2}	I	b _c	b+	b.	c	σcoh	σinc	σscatt	σabs
0-N-1	10.3 MIN	1/2	-37.0(6)	0	-37.0(6)		43.01(2)		43.01(2)	0
1-Н			-3.7409(11)				1.7568(10)	80.26(6)	82.02(6)	0.3326(7)
1-H-1	99.985	1/2	-3.7423(12)	10.817(5)	-47.420(14)	+/-	1.7583(10)	80.27(6)	82.03(6)	0.3326(7)
1-H-2	0.0149	1	6.674(6)	9.53(3)	0.975(60)		5.592(7)	2.05(3)	7.64(3)	0.000519(7)

Isotopic substitution – Reflectometry example

Isotopic substitution – Reflectometry example Phospholipids

Isotopic substitution – Reflectometry example

 $SLD = \frac{\sum_{i=1}^{N} b_{ci}}{V_m}$ Coherent scattering length of ith atom Molecular volume

PEG match point silica + PEG in 15% D₂O

ĽŠ

SANS data

