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WHY 
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Why neutrons
Identity card Uncharged

• Strongly penetrating
• Non-invasive probe

Magnetic
• Investigating magnetic strucutres microscopically
• Magnetic fluctuations
• Devel new magnetic materials 

Spin
• Polarized beams
• Study of nuclear atomic orientation
• Coherent and incoherent scattering 

Neutrons interact with nuclei
• Sensitive to light atoms
• Isotopic substitution



Why neutrons

A
kmE

hmeVmvkE 8.1
2

252
2
1 »=Þ== l

A
kmE

hMeVmvkE 0003.0
2

12
2
1 »=Þ== l

𝐸 =
1
2𝑚𝑣

! = 𝑘"𝑇 =
ℎ!

2𝑚𝜆! =
ℏ!𝑘!

2𝑚 = ℏ𝜔

𝑘 =
2𝜋
𝜆𝜆 =

ℎ
𝑚𝑣



Why neutrons
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Wavelength similar to distances in condensed matter

Energy similar to many excitations in solids and liquids:
• Molecular vibrations
• Lattice modes
• Atomic dynamics

NOTE: X-rays for same wavelengths have keV energy so not suitable for these excitations



Neutrons’ interactions





Why neutrons
THIS IS KEY! 
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G(r,t)

I(Q,t)

S(Q,w)
Pair-Correlation FunctionDynamic Structure Factor

Intermediate Scattering Function

FT (space-time)

FT (time) FT (space)

S(Q,w) is proportional to the measured intensity I(q,T)

w

• Spectroscopy:  
I(q,T) µ S(Q,w)      with  Q  = f(q, li, lf) ,    w = wi - wf

• Diffraction:     
I(q,T) µ ∫!"

#"𝑆 𝑄,𝜔 𝑑𝜔 = 𝑆(𝑄) with  Qel = (4p / li) sen(q/2)
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A detector has to give us 
information about the 
single neutron (not always!):

“Where” (diffraction) (1D, 2D) 

“Where and when” (spectroscopy) (Q,E) 

(Q) 

Note: ToF is needed in both diffraction and spectroscopy 

• Spectroscopy:  
I(q,T) µ S(Q,w)      with  Q  = f(q, li, lf) ,    w = wi - wf

• Diffraction:     
I(q,T) µ ∫!"

#"𝑆 𝑄,𝜔 = 𝑆(𝑄) with  Qel = (4p / li) sen(q/2)
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Expansion only first term S=0 (spherical wave)

𝑌/0-- = 𝑐𝑜𝑠𝑡
spherical symmetric no dependence on angles
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Thermal neutron cannot change the internal energy of the nucleus

Single neutron to single nucleus scattering IS ELASTIC

𝒇(𝜽,𝝋) Means that the scattering depends on the direction! BUT…

Bessel funct Spherical harmonics

𝜆 = 1.8Å ≈ 10+,-𝑚

10+,.𝑚Nuclear interaction

Expansion only first term S=0 (spherical wave)

𝑌/0-- = 𝑐𝑜𝑠𝑡
spherical symmetric no dependence on angles

𝑑𝜎
𝑑Ω = 𝑏 ! 𝜎121 = 4𝜋 𝑏 !



𝒆𝒊𝒌𝒛

−𝒃
𝒆𝒊𝒌𝒛

𝒓

Fermi pseudo-potentialScattering by a SINGLE nucleus

𝒇(𝜽,𝝋)
𝒆𝒊𝒌𝒛

𝒓



Schrodinger

𝒆𝒊𝒌𝒛

−𝒃
𝒆𝒊𝒌𝒛

𝒓

𝜎121 = 4𝜋 𝑏 !

Fermi pseudo-potentialScattering by a SINGLE nucleus



Schrodinger

𝒆𝒊𝒌𝒛

−𝒃
𝒆𝒊𝒌𝒛

𝒓

𝜎121 = 4𝜋 𝑏 !

−𝒃
𝒆𝒊𝒌𝒛

𝒓
b > 0 repulsive

Or scattered wave in phase or out of phase with incoming wave

b is independent from the neutron Energy
b is in general a complex quantity

𝜎121 = 4𝜋 𝑏 ! 𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

𝑏 = 𝑏6 − 𝑖𝑏′′

Fermi pseudo-potential

b < 0 attractive

Scattering by a SINGLE nucleus



b depends on the neutron-nucleus system spin state (combined spin or ), 

b is independent from the neutron Energy

b is in general a complex quantity 𝜎121 = 4𝜋 𝑏 ! 𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏𝑏 = 𝑏6 − 𝑖𝑏′′

Scattering by a SINGLE nucleus

𝐼 −
1
2 𝐼 +

1
2



b depends on the neutron-nucleus system spin state (combined spin or ), 

+

b is independent from the neutron Energy

b is in general a complex quantity 𝜎121 = 4𝜋 𝑏 ! 𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏𝑏 = 𝑏6 − 𝑖𝑏′′

Neutron 
spin S = 1/2

Proton (1H) 
spin I = 1/2

Combined spin = 0

Combined spin = 1

b = -47.50 fm

b = 10.85 fm

Scattering by a SINGLE nucleus

𝐼 −
1
2 𝐼 +

1
2



b depends on the neutron-nucleus system spin state (combined spin or ), 

+

b is independent from the neutron Energy

b is in general a complex quantity 𝜎121 = 4𝜋 𝑏 ! 𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏𝑏 = 𝑏6 − 𝑖𝑏′′

Neutron 
spin S = 1/2

Proton (1H) 
spin I = 1/2

Combined spin = 0

Combined spin = 1

b = -47.50 fm

b = 10.85 fm

+
Neutron 

spin S = 1/2
D (2H) 

spin I = 1

Combined spin = 1/2

Combined spin = 3/2

b = 0.98 fm

b = 9.53 fm

+
Neutron 

spin S = 1/2
alpha
(4He) 

spin I = 0

Combined spin = 1/2 b = 3.26 fm Only one value for b!!!

Scattering by a SINGLE nucleus

Coherent and Incoherent scattering has a meaning only when we consider a group of nuclei not a single nucleus 

𝐼 −
1
2 𝐼 +

1
2



b depends on the neutron-nucleus system spin state (combined spin or ), 

+

b is independent from the neutron Energy

b is in general a complex quantity 𝜎121 = 4𝜋 𝑏 ! 𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏𝑏 = 𝑏6 − 𝑖𝑏′′

Neutron 
spin S = 1/2

Proton (1H) 
spin I = 1/2

Combined spin = 0

Combined spin = 1

b = -47.50 fm

b = 10.85 fm

+
Neutron 

spin S = 1/2
D (2H) 

spin I = 1

Combined spin = 1/2

Combined spin = 3/2

b = 0.98 fm

b = 9.53 fm

+
Neutron 

spin S = 1/2
alpha
(4He) 

spin I = 0

Combined spin = 1/2 b = 3.26 fm Only one value for b!!!

Scattering by a SINGLE nucleus

Coherent and Incoherent scattering has a meaning only when we consider a group of nuclei not a single nucleus 

𝐼 −
1
2 𝐼 +

1
2



Scattering by a MANY nuclei

NOTE: we do the math for no exchange of energy  



Scattering by a MANY nuclei Even from the same type !!!

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

𝜓583110q𝑒$9#:$
−𝑏$
𝑟 − 𝑅$

𝑒$96 ;+:$

Spherical wave out

k’

Very simplified math! Just enough to understand the principle.

Many nuclei so now this is a sum !



Scattering by a MANY nuclei Even from the same type !!!

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

𝜓583110q𝑒$9#:$
−𝑏$
𝑟 − 𝑅$

𝑒$96 ;+:$

Spherical wave out

k’

Assuming r >> Ri

𝑑𝜎
𝑑Ω

∝ 𝜓 ! =q
$,=

𝑏$𝑏=𝑒$ 9#+96 :$+:% =q
$,=

𝑏$𝑏=𝑒+$> :$+:% 𝑸 = 𝒌6 − 𝒌𝟎

Momentum transfer

Note: N = number of atoms in scattering system

Very simplified math! Just enough to understand the principle.

Many nuclei so now this is a sum !



Scattering by a MANY nuclei Even from the same type !!!

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

𝜓583110q𝑒$9#:$
−𝑏$
𝑟 − 𝑅$

𝑒$96 ;+:$

Spherical wave out

k’

Assuming r >> Ri

𝑑𝜎
𝑑Ω

∝ 𝜓 ! =q
$,=

𝑏$𝑏=𝑒$ 9#+96 :$+:% =q
$,=

𝑏$𝑏=𝑒+$> :$+:% 𝑸 = 𝒌6 − 𝒌𝟎

Momentum transfer

=q
$0=

𝑏$𝑏=𝑒+$> :$+:% +q
$@=

𝑏$𝑏=𝑒+$> :$+:% = ⋯ = 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q
$@=

𝑒+$> :$+:%

Note: N = number of atoms in scattering system

Very simplified math! Just enough to understand the principle.

Many nuclei so now this is a sum !

=q
$0=

𝑏$𝑏$𝑒+$> :$+:$

=q
$0=

𝑏$𝑏$𝑒- =q
$0=

𝑏$𝑏$1



Scattering by a MANY nuclei Even from the same type !!!

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

𝜓583110q𝑒$9#:$
−𝑏$
𝑟 − 𝑅$

𝑒$96 ;+:$

Spherical wave out

k’

Assuming r >> Ri

𝑑𝜎
𝑑Ω

∝ 𝜓 ! =q
$,=

𝑏$𝑏=𝑒$ 9#+96 :$+:% =q
$,=

𝑏$𝑏=𝑒+$> :$+:% 𝑸 = 𝒌6 − 𝒌𝟎

Momentum transfer

=q
$0=

𝑏$𝑏=𝑒+$> :$+:% +q
$@=

𝑏$𝑏=𝑒+$> :$+:% = ⋯ = 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q
$@=

𝑒+$> :$+:%

Note: N = number of atoms in scattering system

Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

Very simplified math! Just enough to understand the principle.

𝜎121 = 𝜎8 + 𝜎$ = 4𝜋 𝑏 !

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ ! 𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

Many nuclei so now this is a sum !



Scattering by a MANY nuclei Even from the same type !!!

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

Spherical wave out

k’

=q
$0=

𝑏$𝑏=𝑒+$> :$+:% +q
$@=

𝑏$𝑏=𝑒+$> :$+:% = ⋯ = 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q
$@=

𝑒+$> :$+:%

Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

𝜎121 = 𝜎8 + 𝜎$ = 4𝜋 𝑏 !

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ ! 𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

=
b bcbi

+

Very simplified math! Just enough to understand the principle.



Scattering by a MANY nuclei Even from the same type !!!

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

Spherical wave out

k’

=
b bcbi=0

+

Very simplified math! Just enough to understand the principle.

+
Neutron 

spin S = 1/2
alpha
(4He) 

spin I = 0

Combined spin = 1/2 b = 3.26 fm Only one value for b!!!

Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

𝜎121 = 𝜎8 + 𝜎$ = 4𝜋 𝑏 !

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ ! 𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%



Scattering by a MANY nuclei

Neutron 
spin S = 1/2 𝑅$

𝒆𝒊𝒌𝟎𝑹𝒊
𝑘-

Spherical wave out

k’

=
b bc~0bi

+

Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

𝜎121 = 𝜎8 + 𝜎$ = 4𝜋 𝑏 !

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ ! 𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

VANADIUM

bc

𝑏 !q
$@=

𝑒+$> :$+:%

small So this term can do whatever 
but it counts little



Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

𝜎121 = 𝜎8 + 𝜎$ = 4𝜋 𝑏 !

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ ! 𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

Sears



Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

𝜎121 = 𝜎8 + 𝜎$ = 4𝜋 𝑏 !

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ ! 𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝜎345 =
4𝜋
𝑘 𝐼𝑚 𝑏

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%Equivalently
instead of bi 

+
Neutron 

spin S = 1/2
Proton (1H) 
spin I = 1/2

Combined spin = 0

Combined spin = 1

b = -47.50 fm

b = 10.85 fm

𝑔A =
𝐼 + 1
2𝐼 + 1 𝑔+ =

𝐼
2𝐼 + 1

𝑔A = 3/4 𝑔+ = 1/4

𝑏8 = 𝑔A𝑏A + 𝑔+𝑏+

𝑏$
! = 𝑔A𝑔+(𝑏A − 𝑏+)!

𝑏8 =
3
4
10.8 −

1
4
47.4 = −3.7𝑓𝑚

𝑏$ =
3
4
1
4 (10.8 + 47.4)

! = 25.2𝑓𝑚

Sears

ILL blue book

𝐼 −
1
2𝐼 +

1
2

combined spin



ILL blue book

Sears



Scattering by a MANY nuclei: NOTE

bcbi
Coherent ScatteringIncoherent Scattering

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%



Scattering by a MANY nuclei: NOTE

=
bcbi

+
Coherent ScatteringIncoherent Scattering

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

Xb=b+=b-=bc
(Helium-4)

n
One isotope, I=0

Only one spin-spin 
interaction possible



Scattering by a MANY nuclei: NOTE

=
b+≠b-

(Deuterium)

bcbi
+

Coherent ScatteringIncoherent Scattering

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

n
One isotope, I≠0 +

Xb=b+=b-=bc
(Helium-4)

n
One isotope, I=0

=
Only one spin-spin 
interaction possible

Average over 
spin states

Spin incoh



Scattering by a MANY nuclei: NOTE

=
b+≠b-

(Deuterium)

bcbi
+

Coherent ScatteringIncoherent Scattering

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

n
One isotope, I≠0 +

+

X

b+≠b-
for each type of H

(Hydrogen
1H, 2H and 3H)

n
One atom, I≠0

b=b+=b-=bc
(Helium-4)

n
One isotope, I=0

=
=

Only one spin-spin 
interaction possible

Average over 
spin states

Average over 
spin states and different 
isotopes with different b

Spin incoh

Spin +isotope incoh



Scattering by a MANY nuclei: NOTE

=
b+≠b-

(Deuterium)

bcbi
+

Coherent ScatteringIncoherent Scattering

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

n
One isotope, I≠0

b+≠b-
For each isotope and atom
(Hydrogen+Oxigen)

+
+

X

b+≠b-
for each type of H

(Hydrogen
1H, 2H and 3H)

n
One atom, I≠0

n
Two atoms

b=b+=b-=bc
(Helium-4)

n
One isotope, I=0

=

=
=

+

Only one spin-spin 
interaction possible

Average over 
spin states

Average over 
spin states and different 
isotopes with different b

Average over 
spin states and different 
isotopes with different b 
of different atoms

Spin incoh

Spin +isotope incoh

Spin +isotope (atom) incoh



Scattering by a MANY nuclei: NOTE

=
b+

(Deuterium)

bcbi
+

Coherent ScatteringIncoherent Scattering

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

n
One isotope, I≠0

b+≠b-
For each isotope and atom
(Hydrogen+Oxigen)

+
+

X

b+≠b-
for each type of H

(Hydrogen
1H, 2H and 3H)

n
One atom, I≠0

n
Two atoms

b=b+=b-=bc
(Helium-4)

n
One isotope, I=0

=

=
=

+

Only one spin-spin 
interaction possible

Average over 
spin states only b+

Average over 
spin states and different 
isotopes with different b+

Average over 
spin states and different 
isotopes with 
different b+ 
of different atoms

POLARIZED beam and sample
(both need to be!!!)

X
These now are different averages!

Spin +isotope incoh

Spin +isotope (atom) incoh



GENERALIZATION
NOTE: we did the math for no exchange of energy  

This is the math with energy exchange … 



sample

𝜃 𝑸 = 𝒌𝒊 − 𝒌𝒇

𝒌𝒇

𝐸$𝒌𝒊

𝐸&

Incident beam

detector

dW

𝑬 = ℏ𝒘 = 𝑬𝒊 − 𝑬𝒇

Exchanged wavevector – momentum transfer 

Exchanged energy

scattered beam

𝐸5$ 𝐸5&

Energy of incoming n

Energy of sample before interaction

Fermi’s golden rule

Fermi’s golden rule: the cross-section represents all the processes in which the state of the scattering system changes from A to B

BA𝐸$𝒌𝒊
𝐸5$

𝒌𝒇
𝐸&

𝐸5&

Conservation of energy implies:

𝐸$ + 𝐸5$- 𝐸&- 𝐸5&=0 ∫𝛿 𝐸$ + 𝐸5$ − 𝐸& + 𝐸5& 𝑑𝐸 =1

𝑑!𝜎
𝑑Ω𝑑𝐸B→"

=
𝑘&
𝑘$

1
2𝜋ℏq

/ =

𝑏/𝑏=|
+D

AD
𝐴 𝑒+$ E>F;̅ 𝐵 𝐵 𝑒$H1/ℏ𝑒$ E>F;̅𝑒+$H1/ℏ 𝐴 𝑒+$K1/ℏ𝑑𝑡

𝒓 = 𝑅𝑖 − 𝑅𝑗 Positions of scattering centres 

Sum over all possible A and B

𝑑!𝜎
𝑑Ω𝑑𝐸 =

𝑘&
𝑘$

1
2𝜋ℏq

/ =

𝑏/𝑏=|
+D

AD
𝑒+$ E>F;̅(-) 𝑒$ E>F;̅(1) 𝑒+$K1𝑑𝑡

𝑑!𝜎
𝑑Ω𝑑𝐸 =

𝑘&
𝑘$

1
2𝜋ℏq

/ =

𝑏/𝑏=|
+D

AD
𝑒+$ E>F;̅(-) 𝑒$ E>F;̅(1) 𝑒+$K1𝑑𝑡

UNFIN
ISH

ED
 SL

IDE



𝑑!𝜎
𝑑Ω𝑑𝐸

=
𝑘&
𝑘$

1
2𝜋ℏ

q
/ =

𝑏/𝑏=|
+D

AD
𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1) 𝑒+$K1𝑑𝑡

O&P
OQOR

= 9'
9$

,
!Sℏ

∑/ @ = 𝑏/𝑏= ∫+D
AD 𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1) 𝑒+$K1𝑑𝑡 + 9'

9$

,
!Sℏ

∑/0 = 𝑏/𝑏= ∫+D
AD 𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1) 𝑒+$K1𝑑𝑡 =

=9'
9$

,
!Sℏ

∑/ @ = 𝑏 ! ∫+D
AD 𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1) 𝑒+$K1𝑑𝑡 + 9'

9$

,
!Sℏ

∑/0 =( 𝑏! − 𝑏 !) ∫+D
AD 𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1) 𝑒+$K1𝑑𝑡 =

Coherent Scattering
Depends on the direction of Q

Incoherent Scattering
Uniform in all directions

𝜎$ = 4𝜋 𝑏! − 𝑏 ! = 4𝜋 𝑏$ !𝜎8 = 4𝜋 𝑏 ! = 4𝜋 𝑏8 !

𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1) 𝑒+$ E>F N;/(-) 𝑒$ E>F;=(1)

Correlation of Same nucleus at different times
-> NO interference  

Same nucleus at different times, 
and correlation of different nuclei at different times 
-> interference

Add and subtract the l=j term

q
/0 =

q
/ @ = UNFIN

ISH
ED

 SL
IDE



diff

𝑑𝜎
𝑑Ω ∝ 𝑏! − 𝑏 ! 𝑁 + 𝑏 !q

$@=

𝑒+$> :$+:%

O&P
OQOR

= 9'
9$

,
!Sℏ
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sample

𝜃 𝑸 = 𝒌𝒊 − 𝒌𝒇

𝒌𝒇

𝐸$𝒌𝒊

𝐸&

Incident beam

detector

dW

𝑬 = ℏ𝒘 = 𝑬𝒊 − 𝑬𝒇

Exchanged wavevector – momentum transfer 

Exchanged energy

scattered beam

𝑑!𝜎
𝑑Ω𝑑𝐸

𝐸5$

𝐸5&Energy of incoming n

Energy of sample before interaction

Conservation of energy implies:

𝐸$ + 𝐸5$- 𝐸&- 𝐸5&=0 ∫𝛿 𝐸$ + 𝐸5$ − 𝐸& + 𝐸5& 𝑑𝐸 =1

Fermi’s golden rule
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Neutron 
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Momentum transfer

𝑬 = ℏ𝒘 = 𝑬𝒊 − 𝑬𝒇

Exchange in energy
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Contrast Matching
Isotopic substitution – Reflectometry example



Isotopic substitution – Reflectometry example

Phospholipids

Hydrophilic head

Hydrophobic tails



Phospholipids

Hydrophilic head Hydrophobic tails

Isotopic substitution – Reflectometry example
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Stuff with their SLD

Isotopic substitution – Reflectometry example

Side view

Top view

𝑆𝐿𝐷 =
∑$0,T 𝑏8$
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Coherent scattering length of ith atom
Molecular volume
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Molecular volume

Stuff with their SLD, but some heads deuterated
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Stuff with their SLD, but water matching proteins 
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Stuff with their SLD, but water matching heads
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8% di D2O in H2O  = non refletive water

Side view

Top view

Isotopic substitution – Reflectometry example

SLD = 0

𝑆𝐿𝐷 =
∑$0,T 𝑏8$
𝑉U

Coherent scattering length of ith atom
Molecular volume

H2O / H2O





SANS data


