

Introduction to small-angle scattering

JUDITH HOUSTON INSTRUMENT SCIENTIST @ THE ESS

2024-03-11

LOKI : SANS for soft matter, materials & bioscience

Lab Chip, 2017, 17, 1559

Non-Equilibrium Studies: Self-Assembly & Kinetics

Colloid Polym Sci, 2010, 288, 827

Soft Matter, 2011, 7, 9992

ABILITIES:

- Small beams for flow-through, scanning & microfluidic experiments.
- Perform "single-shot" kinetic measurements on sub-second timescales.
- Investigate multiple length scale systems (simultaneously 0.5-300 nm)
- High throughput of regular SANS measurements

 \rightarrow high flux & wide simultaneous size range.

Solving life science problems with neutron tools...

Weakly scattering bio-engineered samples

PLOS BIOLOGY

Check for

RESEARCH ARTICLE

The in vivo structure of biological membranes and evidence for lipid domains

Jonathan D. Nickels^{1,2,3e}, Sneha Chatterjee^{2,4e}, Christopher B. Stanley², Shuo Qian², Xiaolin Cheng^{5,6}, Dean A. A. Myles², Robert F. Standaert^{1,2,4,6}*, James G. Elkins^{4,7}*, John Katsaras^{1,2,3}*

1 Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America, 2 Biology and Sott Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America, 5 Center for Molecular Biophysis, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America, 5 Center for Molecular Biophysis, Cak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America, 6 Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, United States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, Nited States of America, 9 Department of Microbiology, University of Tennessee, Knowlile, Tennessee, Nates of America, 9 Department of Microbiology, Neinestry, 9 Differences, Neurophile, Tennessee, Nates of America, 9 Department Microbiology, Neinesse, 9 Differences, Neurophile, Tennessee, Neurophile, Tennessee, Nates Nates of America, 9 Department Neurophile, Pannessee, Nates Nates of America, 9 Department Neurophile, Pannessee, Nates Nates of A

© These authors contributed equally to this work. * <u>standaertrf@ornl.gov</u> (RFS); <u>elkinsjg@ornl.gov</u> (JGE); <u>katsarasj@ornl.gov</u> (JK)

Probing membrane dynamics Understanding membrane biofusion

The experiment

The result

- Lipid exchange between the outer leaflets of the vesicles decreases
 the difference in contrast
 - Rate of decrease in contrast directly related to rate of exchange

J. Phys. Chem. Lett. 2023, 14, 18, 4172

Gluten vs. gluten-free pasta varieties

The experiment

The result

2

Small-angle scattering and How does it work?

Neutrons					
X-rays		 	 	 	
Light					

$$I_{exp}(q) = n\Delta\rho^2 V^2 P(q)S(q)$$

Form factor P(q): all information on the single scattering object (shape, architecture, size...)

 $I_{exp}(q) = n\Delta\rho^2 V^2 P(q)S(q)$

Form factor P(q): all information on the single scattering object (shape, architecture, size...) Structure factor S(q): all information on the arrangement in the sample (nearest neighbour distance, phase, crystalline lattice)

Scattering contrast, Δho

Contrast matching

When the monster came, Lola remained undetected. Harold, of course, was immediately devoured.

Contrast matching using light

Laura Waller on youtube.com

Contrast matching using light and X-rays

- Contrast matching is possible for all the scattering methods.
- Light: match the between the **refractive index** of the sample and the solvent.
- X-ray: match the electron density between the sample and the solvent.

This same idea works for neutrons by playing with H/D substitution!

X-ray scattering length (arb. 0 07 09 09

For neutrons =

Ca S Si Al Mg O Fe Η D ...even for different isotopes X-Rays of the same element! **Neutrons**

Recap: X-rays and neutrons see things differently!

units)

80

-24 keV

80

Neutrons and contrast matching

Solvent 1 Solvent 2

Core-shell particle

Solvent 3

Shell-only

$$I_{exp}(q) = n\Delta\rho^2 V^2 P(q)S(q)$$

Selective deuteration in combination with neutrons lets us investigate selected parts of complex assemblies.

Combining X-Ray and Neutron measurements provides more information

2024-03-11 INTRODUCTION TO SMALL-ANGLE SCATTERING

Neutrons and contrast matching

$$I_{exp}(q) = n\Delta\rho^2 V^2 P(q)S(q)$$

Selective deuteration in combination with neutrons lets us investigate selected parts of complex assemblies.

Combining X-Ray and Neutron measurements provides more information

Why is it so important for Life Science?

- one of the easiest way to change the contrast is switching from H \rightarrow D
- one of the main elements of biological matter is H, thus neutron scattering and CV is natural tool

3

Colloidal particles in a crowded environment

Solvent 1

Question: how does a soft colloid respond to crowding?

Problem: in concentrated solutions $I(q) \propto P(q)S(q)$ Hydrogenated particle

Deuterated particle

All particles visible

All particles visible

Only the labelled particle is visible

Step 1: prepare a series of the same sample (highly diluted) in

different solvents (e.g. water/heavy water mixtures).

Step 2: perform small-angle neutron scattering

measurements at low-Q (Guinier regime).

Step 3: fit the data at low-Q with the Guinier approximation for all the different solvents

$$\lim_{q \to 0} P(q) = I(0) \exp\left[-\frac{q^2 \langle S^2 \rangle}{3}\right]$$

Step 4: plot the values of I(0) obtained from the fits versus the solvent composition and look for the intercept with the *x*-axes

Step 1: prepare a series of the same sample (highly diluted) in

different solvents (e.g. water/heavy water mixtures).

Step 2: perform small-angle neutron scattering

measurements at low-Q (Guinier regime).

Step 3: fit the data at low-Q with the Guinier approximation for all the different solvents

$$\lim_{q \to 0} P(q) = I(0) \exp\left[-\frac{q^2 \langle S^2 \rangle}{3}\right]$$

Step 4: plot the values of I(0) obtained from the fits versus the solvent composition and look for the intercept with the *x*-axes

□ 0 wt% D₂O / 100 wt% H₂O > 20 wt% D₂O / 80 wt% H₂O > 50 wt% D₂O / 50 wt% H₂O ○ 60 wt% D₂O / 40 wt% H₂O 480 wt% D₂O / 20 wt% H₂O

□ 0 wt% D₂O / 100 wt% H₂O ▷ 20 wt% D₂O / 80 wt% H₂O ◇ 50 wt% D₂O / 50 wt% H₂O ○ 60 wt% D₂O / 40 wt% H₂O \triangleleft 80 wt% D₂O / 20 wt% H₂O \bigtriangleup 100 wt% D₂O / 0 wt% H₂O

□ 0 wt% D₂O / 100 wt% H₂O ▷ 20 wt% D₂O / 80 wt% H₂O ◇ 50 wt% D₂O / 50 wt% H₂O ○ 60 wt% D₂O / 40 wt% H₂O \triangleleft 80 wt% D₂O / 20 wt% H₂O \triangle 100 wt% D₂O / 0 wt% H₂O

$$I_{exp}(q) = n\Delta\rho^2 V^2 P(q)S(q)$$

All the samples have the same concentration of the same particles.

All particles visible

Only the labelled particle is visible

4

Using SAS to quantify the softness of small colloids

Colloids in crowded suspensions

We need the bulk modulus!

We cannot use microscopy, particles too small!

Information not accessible at high pressures

Information not accessible at high pressures

Neutrons and contrast variation

deuterated polymers

Neutrons and contrast variation

Osmotic stress solutions for small colloids

Now we see only the colloids!

Concentration osmotic stress polymer

How do we measure the elastic moduli? Ultra-soft Hard Hollow 10^{15} 10^{15} 10^{15} 10^{10} 10^{10} (q) (arb. units) $I(q) \ ({ m cm}^{-1})$ 10^{10} 10^{5} 10^{5}

 10^{0}

 10^{-5}

 10^{0}

 10^{-2}

 10^{-1}

 $q (nm^{-1})$

We probe a larger range of pressures (contrast-variation) and we can obtain the characteristic lengths.

 10^{-1}

 $q (nm^{-1})$

J. E. Houston, L. Fruhner, A. de la Cotte, J. Rojo González, A. Petrunin, U. Gasser, R. Schweins, J. Allgaier, W. Richtering, A. Fernandez-Nieves, and A. Scotti. Science Advances 8: eabn6129 (2022); A. Scotti, U. Gasser, A.V. Petrunin, L. Fruhner, W. Richtering and J. E. Houston. Soft Matter 18: 5750 (2022).

 10^{0}

 10^{0}

 10^{-2}

 $I(q) \ (\mathrm{cm}^{-1})$

 10^{5}

 10^{0}

 10^{-2}

 10^{-1}

 $q (nm^{-1})$

 10^{0}

J. E. Houston, L. Fruhner, A. de la Cotte, J. Rojo González, A. Petrunin, U. Gasser, R. Schweins, J. Allgaier, W. Richtering, A. Fernandez-Nieves, and A. Scotti. Science Advances 8: eabn6129 (2022); A. Scotti, U. Gasser, A. V. Petrunin, L. Fruhner, W. Richtering and J. E. Houston. Soft Matter 18: 5750 (2022).

J. E. Houston, L. Fruhner, A. de la Cotte, J. Rojo González, A. Petrunin, U. Gasser, R. Schweins, J. Allgaier, W. Richtering, A. Fernandez-Nieves, and A. Scotti. Science Advances 8: eabn6129 (2022); A. Scotti, U. Gasser, A. V. Petrunin, L. Fruhner, W. Richtering and J. E. Houston. Soft Matter 18: 5750 (2022).

Bio-colloids and osmotic stress, contrast

Interesting also for bio-relevant colloids

Explore the effects of different osmotic stress on the final architecture of the viral capsid and the self-assembly.

I. André (LU, W. Potrzebowski Sweden) (ESS, Sweden)

A. Scotti (Lund/Malmö, Sweden)

Interesting also for bio-relevant colloids

Explore the effects of different osmotic stress on the final architecture of the viral capsid and the self-assembly.

5

Small-Angle Scattering Data Analysis

Data analysis Few different options for SAS data

Model-Fitting	Real-Space	<i>Ab-Initio</i>	MC/MD	Other Methods
Methods	Methods	Methods	Methods	
Example of 2D model-fitting using the SasView application	Cavity size distributions in a steel weldment as derived from SANS 10.1179/1743284714Y.0000000577	Ab-initio modelling of polcalcin constrained by SAXS 10.1002/pro.3376	MC & TAMD modelling of proteins constrained by SANS 10.1016/j.jmgm.2017.02.010	Time evolution of the invariant during crystallisation of P4MP1 10.1038/pj.2012.204

https://www.isis.stfc.ac.uk/Pages/SANSdataanalysisOverview.aspx

Typical data fitting workflow

Typical data fitting workflow

Fitting in SasView

70+ models to explain data

Courtesy of Wojciech Potrzebowski ⁶⁷

2D fitting For oriented or magnetic particles

1D and 2D cylinder model

Plugin models

SasView provides tools and infrastructure for custom/plugin models

Plug

Desc

Fit p

Fund

- Dedicated editor
- Syntax and performance testing
- Directly available in SasView ecosystem
- Community developed models can be deposited to marketplace: https://marketplace.sasview.org/

SasView Marketplace Search	٩						+) Log In
OrientedMagneticChains	with the option of adding a magnetic SLD to each layer. The chain scattering is the incoherent sum of a user- defined combination of sin	Sphere	21 May 2021	krycket	0	×	Ellipsoid Lamellae Other
Magnetic vortex in a disc	This model describes the approximated scattering of a magnetic vortex in a flat ferromagnetic cylinders made of isotropic material (Metiov2016). The circular cylinder with radius \$R\$ and length \$L\$	Cylinder	10 Mar 2021	dehoni	0	×	Paracrystal Parallelepiped Shape-Independent Sphere
Field-dependent magnetic SANS of misaligned magnetic moments in bulk ferromagnets	For bulk ferromagnets, this model allows to analyze the field-dependent purely magnetic SANS. The misalignment scattering is obtained by subtracting the reference scattering at a high (saturating)	Sphere	17 Feb 2021	dehoni	0	×	Structure Factor
SANS of bulk ferromagnets	This model is a micromagnetic approach to analyse the SANS that arises from nanoscale variations in the magnitude and orientation of the magnetization in bulk ferromagnets in the approach to magnet	Sphere	17 Feb 2021	dehoni	0	×	
core_shell_ellipsoid_tied and core_shell_ellipsoid_repar 2024-0	Two methods, both requiring sasview v5, to produce a core_shell_ellipsoid with solvent in the shell. Parameters include the dry_shell / core volume ratio, the local fraction of solvent in the she	Ellipsoid	16 Feb 2021	richardh SMA	0 	× Angl	E SCATTERING

		Model Editor - m	v broad peak*		8 .	Model Editor - my broad peak*
	_		Jonatal pour			
	P	lugin Definition	Model editor		1100	Plugin Definition Model editor
nı	name				Model	
_b	road_peak	Overwrit	e existing plugin mode	el of this name	r"" Definition	
rip	tion					
s	pecial broad pea	ak model			Calculates	my_broad_peak.
					References	5
ira	meters		Deludiarene			-
) N	-polydisperse		Polydisperse		Authorship	p and Verification
	Parameters	Initial value	Parameters	Initial value	* **Author * **Last Me * **Last Re	:;** **Date:** 2018YYY-09m-20d odified by:** **Date:** 2018YYY-09m-20d viewed by:** **Date:** 2018YYY-09m-20d
	porod_scale	1.0e-05			for a start	
2	porod_exp	3			from nump	py import inf
3	lorentz_length	50			name = "n title = "Use description	ny_broad_peak" er model for my_broad_peak" n = ""My special broad peak model"""
5 tio	lorentz_exp n(x)	2.0			parameter # ["name ["porod, ["lorentz ["lorentz ["lorentz ["peak_p ["peak_p]	s = [, "units", default, [lower, upper], "type", "description"], scale, ", 'le-OS, [-inf, inf], ", "], exp(", "3.0, [-inf, inf], ", "], scale', ", 10.0, [-inf, inf], ", "], scale', ", 10.0, [-inf, inf], ", "], ost, ", "0.1, [-inf, inf], ", "], Out [_inf, inf], ", "],
: a :ur	bs(q - peak_pos) * (porod_scale / q ≉ n Iq	• Lorentz_length ↔ porod_exp + lore	ntz_scale / (1 + z ** lo	rentz_exp))	def Iq(x, p q:""Absol z = abs Iq = [po return in ## uncom #def Iqxyl peak, pos, # ""Absc "	<pre>orod_scale, porod_exp, lorentz_length, lorentz_scale, lorentz_exp, peak_ lute scattering^{***} (a _ peak_pos) * lorentz_length rod_scale / q ** porod_exp + lorentz_scale / (1 + z ** lorentz_exp)) q ment the following if lq works for vector x ized = True x, y, porod_scale, porod_exp, lorentz_length, lorentz_scale, lorentz_exp, g): olute scattering of oriented particles.^{***} oriented_form(x, y, args) ment the following if law worke for unctor x w</pre>
		(Help Apply	Cancel		Help Apply

Plugin models tutorial Available at https://www.sasview.org/download/

Page

SasView Tutorials

Creating Custom Fitting Models in SasView Version 5.x

Contents

Running SasView	4
Example 1 – Combining Two Library Models	5
Example 2 – Combining More Than Two Models	8
Example 3 – Creating A Simple Model With The Model Editor	11
Example 4 – Repurposing An Existing Model	17
Example 5 – Reparameterising An Existing Model	23
Example 6 – Getting Creative	27

www.sasview.org

Other SasView functionality

Various utility tools and calculators

Combined SAXS and SANS

Simultaneous measurements on the same sample

- •Low-flux SAXS source
- •Specialized sample environment
- •Non-trivial data analysis
- •SasView (6.0.0) provides a weighting mechanism in simultaneous fitting

6

Small-angle scattering instruments

Small-angle scattering

SAXS: synchrotron vs. benchtop

synchrotron

High brightness

High time resolutions: measurements in ms

Risk of damage to biomaterials

Large dynamic q-range often due to multiple detectors

SAXS: synchrotron vs. benchtop

synchrotron	Benchtop
High brightness	Low brightness – low risk of damage to bio materials, but poor time resolution
High time resolutions: measurements in ms	Poor time resolution: measurements in min-h
Risk of damage to biomaterials	Low risk of damage to biomaterials
Large dynamic q-range often due to multiple detectors	Limited dynamic q-range at one detector

SANS: Continuous vs. time-of flight $q = \frac{4\pi}{\lambda} \sin(\frac{\theta}{2})$

We need to probe the wavevector, Q with neutrons....

Continuous

Fixed wavelength (monochromatic)

Fixed λ , varying θ

Need several measurements at different detector distances to cover adequate q-range

Typically reactor sources (exceptions: TOF instruments in monochromatic mode)

SANS: Continuous vs. time-of flight $q = \frac{4\pi}{\lambda} \sin(\frac{\theta}{2})$

We need to probe the wavevector, Q with neutrons....

Continuous	Time-of-flight
Fixed wavelength (monochromatic)	Wavelength band
Fixed λ , varying θ	Varying θ , varying λ
Need several measurements at different detector distances to cover adequate q-range	Large dynamic q-range at one detector distance, q _{max} /q _{min}
Typically reactor sources (exceptions: TOF instruments in monochromatic mode)	Typically spallation sources (exceptions: ILL D33 and ANSTO Bilby)

High flux but often need several measurements at different distances to cover an adequate Q-range

Need several measurements at different distances to cover an adequate Q-range

Need several measurements at different distances to cover an adequate Q-range

Even shorter wavelengths Full 1.75 to 16.5 Å gives a expand Qmax furtheron to swide simultaneous Q range.

Courtesy of R. K. Heenan and M. Hollamby

33839rear_1D_1.75_16.5

SANS: So you have a choice reactor vs. spallation...

e.g. D11 or D33 @ ILL, France (reactor source)

e.g. SANS2D @ ISIS, UK (spallation source)

Need to also consider the sample environment!

Sample environment

How do we control the positioning and conditions of our samples in the neutron beam?

Sample environment

85

The "off-the-shelf" variety

- Thermostated cell/capillary holder
- Rheometer
- Flow cell with HPLC pumps
- Rotating cell holder
- Couette shear (higher shear rates)
- Plate-plate shear (for e.g. polymers)
- 2.5T electromagnet
- Humidity chamber
- Stopped-flow equipment
- Stress/strain rig (load capacity for stretching polymers)
- Cryostats

Size-Exclusion Chromatography-SANS

Microfluidics

in situ fluorescence, UV/vis absorption, densiometry on a continuous flow cell

Flow in

luorescence excitation

NuRF set-up

Flow out

(b)

UV-visible

Neutron

40 mr

Sample cells for biological solutions

Things to consider before selecting a cell:

- 1. How much hydrogen is in my sample? How concentrated is my sample?
- 2. Is my sample easy to pipette? super viscous? a film? solid?
- 3. How much sample do I have?
- 4. What cells are available and/or used at the beamline?

Sample cells

- Quartz cells no SAS signal and low background
- **Cell thickness** may depend on the H content of the sample
 - 1 mm for samples with more than 50% H
 - 2 or 5 mm for predominantly deuterated samples
- Stopper or no stopper?
- Cell shape:
 - 10 mm width rectangular cell
 - Cylindrical cell (banjo)
 - 20 mm width rectangular cell (tank)
 - Sandwich cell •
- Sample volume for standard cells: 200 uL to 1 mL
- Some sample environments require specific cells (Al, TiZr...)

Sandwich cells

cuvettes

 ✓ Highly reproducible ✓ Low scattering ✓ Low background

Conclusions

- Small-angle scattering is an experimental technique which uses elastic scattering at small angles to investigate the structure of substances at a mesoscopic scale of ~1–200 nm
- Neutrons are a non-destructive, penetrating probe of structure on the atomic to macroscopic scale.
- Neutrons provide chemical sensitivity being especially sensitive to light elements.
- Neutron scattering can be isotope dependent, so contrast variation using H/D substitution allows complex structures to be more easily understood

Thanks for listening!

Any questions please ask!

(or email judith.houston@ess.eu)

2024-03-11