

Biophysical characterization of hard/soft nanoparticles for surface activity of The University of Manchester pulmonary surfactants in the treatment of infant respiratory distress syndrome

Pinchu Xavier

Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester

- \blacktriangleright Pulmonary surfactant (PS) is a lipid-protein film lining the whole alveolar surface of the lungs.
- \succ It plays a key role in lowering the surface tension almost to 0 mN/m, avoiding alveolar collapse and reducing work during the respiration cycles.
- \succ Premature new-borns with infant respiratory distress syndrome (IRDS), animal-sourced exogenous formulations fail to mimic human physiological performance and have severe side effects.
- The quaternary PS model DPPC:POPC:POPG:cholesterol (6:2:1:1 by mol) in a Langmuir trough containing a 150-mM NaCl subphase to mimic better the physiological environment.
- Surface-sensitive techniques resolve to unknown structural and morphological information about hard/soft nanoparticles, NP interactions with model PS systems.
- \succ These techniques did not help in resolving the surface structures; only Neutron reflectivity can help.

Schematic representing the composition and intuitive structure of PS and the formation of a self-assembled lipid reservoir at the air-water interface.

BAM images of the quaternary PS model on 150 mM NaCl subphase: (a) Cationic NPs and (b) Anionic NPs at a mixing ratio of 1:1 by volume at the stated π values. Scale bars: 100 µm.

Email: pinchu.xavier@manchester.ac.uk

FESEM- March 11-15, 2024