AB INITIO MODELING FOR SAS HANDS-ON

FASEM 2024

ALEXANDROS KOUTSIOUMPAS

JÜLICH CENTRE FOR NEUTRON SCIENCE (JCNS) AT MAIER LEIBNITZ ZENTRUM (MLZ) MUNICH

SCATTERING AT SMALL ANGLES

Probing more "mesoscopic" structure in the presence of solvent

Small-angle scattering

Exploiting information at the inverse space at low-Q (large-D)

$$Q \sim 0.01 - 0.5 \mathring{A}^{-1}$$

 $D \sim 10 - 1000 \mathring{A}$

INTRODUCTION

SCATTERING

Elastic scattering

$$\Delta \Phi = 2\pi \frac{\vec{AB} - \vec{CD}}{\lambda} = \vec{k'}\vec{r} - \vec{k}\vec{r} = \vec{Q}\vec{r}$$

total scattering amplitude is given by the superposition of scattered waves [modulated by the potential V(r)] with a phase difference $\Delta \Phi$

$$A(\vec{Q}) \sim \int V(\vec{r}) e^{i\vec{Q}\vec{r}} d^3r$$

Generalities of solution SAS

scattering from an assembly of atoms

$$A(\vec{Q}) = \sum_{j} f_j \exp(i\vec{Q}\vec{r}_j)$$

dilute solution

$$I_N(\vec{Q}) = \sum_{n=1}^N |\vec{A}_n(\vec{Q})|^2 \xrightarrow{\text{rotational averaging}} I_N(Q) = N < |\vec{A}_n(\vec{Q})|^2 >$$

$$\langle exp(i\vec{Q}\vec{r}) \rangle = \sin Qr/Qr \longrightarrow I_N(Q) = N \sum_j \sum_k (f_j - \rho_w v_j)(f_k - \rho_w v_k) \frac{\sin Qr_{jk}}{Qr_{jk}}$$

using this classic formula

Debye equation

Ĵ

The forward problem

Debye equation

$$I_N(Q) = N \sum_j \sum_k (f_j - \rho_w v_j) (f_k - \rho_w v_k) \frac{\sin Q r_{jk}}{Q r_{jk}}$$

protein data bank (6lyz)

Scattering curve features

The inverse problem

exploiting information contained in the low-q part of the scattering curve where I(q) is dominated by the overall shape of the particles in solution

Svergun, et al. (2001). Biophys. J., 80, 2946.

Pair Distribution Function

$$I(q) = 4\pi \int_{0}^{D_{max}} r^{2} \gamma(r) \frac{\sin qr}{qr} dr$$
$$\gamma(r) = \left\langle \int \Delta \rho(\vec{u}) \Delta \rho(\vec{u} + \vec{r}) \right\rangle_{\omega}$$

spherically averaged autocorrelation function of the excess scattering density

$$p(r) = \frac{r^2}{2\pi^2} \int_0^\infty q^2 I(q) \frac{\sin qr}{qr} dr$$

distribution of distances between volume elements inside the particle

Ab-initio modelling

What we know about proteins and nucleic acids: In general <u>compact</u> & <u>interconnected</u> structures

Simulated annealing Svergun, et al. (1999). Biophys. J., 76, 2879.

► Search for a spatial arrangement of "beads" (X) that reproduces the scattering curve

No unique convergence unless constrained

$$f(X) = \chi^2[I_{exp}(q), I_{model}(q, X)] + \alpha P(X)$$

experimental data - model discrepancy connectivity and compactness penalty

Ab-initio modelling

evolution of the shape

Ab-initio modelling

at the end compact, interconnected structure and a nice fit of the experimental data

Uniqueness

5S RNA

Different Ab-initio runs

No unique solution! But an ensemble of shapes that approximate the real molecular envelope

Forschungszentrum

General workflow

_

- pre-characterization (complementary techniques)

- Scattering experiment Neutrons or X-rays

- Guinier plot

- IFT - Dmax - distance distribution

ab-initio run (multiple)

- consensus model

s angles (SASS SCATTERING

avithe preserve we will use today

DENFERT (taking into account hydration layer)

Greerystals, and amorphous bodies, A. Guinier (1956,

atteinand Oct Kraflayhyd 9820, Ayadim the Peurs Incatom' ab initio structural modelling of biological macromolecules

Alexandros Koutsioubas, Javier Pérez

First published: 10 November 2013 | https://doi.org/10.1107/S0021889813025387 | Citations: 1

X Javier Pérez, e-mail: perez@synchrotron-soleil.fr

reconstruction for hexokinase

Cours M2, 6 déc

reconstruction for thioredoxin reductase

16

JÜLICH Forschungszentrum

Cours M2, 6 décen

Let's run some ab initio reconstructions

Lysozyme

Let's run some ab initio reconstructions

Immunoglobulin

Your turn!

SASB BB

Small Angle Scattering Biological Data Bank

https://www.sasbdb.org

https://alexandros-koutsioumpas.github.io/Denfert/

Special case

membrane protein / detergent complex

Zimmer et al. Biophysical Journal (2006) 90,1752

Multiple phase ab-initio modelling for membrane proteins

low-resolution model

Comparison of reconstructed envelope with the crystallographic structure

Biophysical Journal (2017) 113, 2373–2382

Small advertisement

JCNS Workshop 2024

Trends and Perspectives in Neutron Scattering: Functional Interfaces

08 - 11 October 2024, Tutzing, Germany

Happy to answer your questions

a.koutsioumpas@fz-juelich.de

