

Introduction to Diffraction and Crystallography William SHEPARD, PROXIMA 2A, Synchrotron SOLEIL, France

- I am studying an atom, molecule or particle...
 - Metal complex, organic, protein, DNA, RNA, complex, etc...
 - What is its shape? Domains? Oligomer?
 - Which parts are important for its function?
 - Where or what is its active site?
 - Which residues are critical for binding substrates?
 - What are the factors of specificity?
 - What are the structural changes between different states?
 - What are the dynamics?
 - etc...

What is its 3D structure at <u>atomic</u> resolution?

Problems, problems, problems...

Some hurdles

- Particle size
 - 10 100 Å
 - Probing photon wavelength
 < particle size
 - $-\lambda < 10$ Å
- Orientation
 - Random in solution, amorphous solid & gas
- Fragility
 - C C bond 5.76e-19 J
 - 12.4 keV photon 1.99e-15 J
 - 3454 times more !!!
- Weak signal
 - to see a particle, the probe must <u>interact</u> with it...

One solution...

2-dimensional crystal

Crystallise it!

- Orient the particles the same way
 - Crystals have top, bottom, front, back, left & right
- Repetitive units
 - Combines weak signals
 - Multiple copies resists radiation damage
- Employ phenomena of <u>diffraction</u>
 - Interaction without destruction!

2-dimensional crystal with damaged particles

Diffraction & Reciprocal Space

 $|\mathbf{d}_n| = D (n\lambda / d_{slit}) / \cos \delta$

- Consider the multiple atom experiment
- A smaller spacing (x) between slits or atoms in the lattice yields....
 - a larger separation between diffraction spots (1/x)
 - Each diffraction spot has its own Miller index, (h)
 - Each Miller index represents a vector in real space, [h]

SYNCHROTRON

Lattice Lines, Vectors & Indices

Crystals: Lattice Planes in 3D Space

- Crystals contain sets of lattice planes denoted by Miller indices (hkl)
 - The orientation of a set of lattice planes can be represented by a vector
 - This vector is perpendicular (normal) to the set of planes

- X-ray energy conserved
 - $-\lambda_0 = \lambda_{hkl}$
- When the crystal is rotated
 - A different set of planes diffract

1D, 2D & 3D Diffraction

Ewald Construction Derived

Stills: No Rotation

Figure 3

A still exposure with a stationary crystal contains only a small number of reflections arranged in a set of narrow ellipses.

Rotation Method

Figure 4

When the crystal is rotated, reflections from the same plane in the reciprocal lattice form a lune, limited by two ellipses corresponding to the start and end positions.

To bring more reflection into diffraction, the crystal represented by the reciprocal lattice has to rotate.

An X-ray diffraction pattern from a crystal...

- Reciprocal space is NOT discrete, but rather continuous
 - but Bragg reflections are discrete points in Reciprocal space (h,k,l)
- For larger / smaller unit cell lengths (a, b, c)
 - Diffraction spots are closer together / further apart (a*, b*, c*)
- The crystal lies at the center of the Ewald sphere
 - Scattering vectors have the same length because energy is conserved
 - The ensemble of all of the possible scattering vectors \underline{s}_{hkl} describe a sphere
- The radius of the Ewald sphere is 1/λ
 - Long X-ray wavelengths produce a small Ewald sphere
 - Short X-ray wavelengths produce a large Ewald sphere
- The origin of Reciprocal space:
 - lies at the intersection of \underline{s}_0 and the Ewald sphere
 - All of the diffraction vectors <u>d</u>* originate from the origin of reciprocal space
- Not all points in Reciprocal Space will diffract
 - Only those points that lie on the Ewald sphere will diffract
- The origin of Reciprocal Space is fixed
 - but Reciprocal Space rotates exactly as the crystal rotates
- <u>**a**</u>^{*}, <u>**b**</u>^{*} & <u>**c**</u>^{*} are not necessarily orthogonal to <u>**a**</u>, <u>**b**</u>, <u>**c**</u>

From Scattering to Structure Factors

Diffraction from the Unit Cell Contents?

Types of Scattering

?

- X-rays
 - Electrons (density)
 - Elastic (diffraction)
 - Inelastic (absorption)
- Neutrons
 - nuclei (H/D)
- Electrons
 - Electrostatic charges or fields

Scattered X-ray

- X-ray scattering is the interaction between the electric vector, E, of the incident X-ray and an electron.
 - The scattered X-ray:

Incident X-ray

• has the same wavelength (elastic scattering)

Electron

• is isotropic (equal in all directions)

Scattering from 2 Electrons

The phase shift is derived from the positions of the scatterers!

Scattering from Many Voxels

- Scattering is a *wave function* described by a *structure factor*
 - Any given point, <u>S</u>, in reciprocal space is associated with a *complex* number called a *structure factor*, *F*(<u>S</u>).
 - A structure factor, *F*(<u>S</u>),
 - is the summation of all scattered waves along <u>S</u>,
 - has amplitude, $|F(\underline{S})|$, and phase, $\varphi(\underline{S})$.

For <u>continuous</u> reciprocal space (e.g. WAXS) employ <u>S</u> and <u>r</u>

$$F(\underline{S}) = \int_{-\infty}^{+\infty} \rho(\underline{r}) e^{2\pi i \underline{S} \cdot \underline{r}} dr$$

For <u>discrete</u> reciprocal space (e.g. MX) employ <u>h</u> and <u>x</u>

- Miller indices, <u>h</u>
- fractional coordinates, <u>x</u>

$$F(\underline{h}) = \int_0^1 \rho(\underline{x}) e^{2\pi i \underline{h} \cdot \underline{x}} dx$$

Form Factor Equation

Atomic Form (Scattering) Factors

- Atoms & ions are diffuse
 - Like clouds of electrons

- Atomic Form Factors
 - Units = electrons (X-rays)
 - For θ =0, f = number electrons
 - Depends upon oxidation state
 - Decays with $\sin(\theta) / \lambda$
 - More diffuse $\rho(\mathbf{r})$ leads to faster decay in $f(\theta)$

Intensity Equation

 The intensity of the scattered wave, *I(<u>h</u>)*, is determined by multiplying the structure factor, <u>*F(h)*</u>, by its complex conjugate

Reconstucting Density, $\rho(\underline{x})$

Jean-Baptisite Joseph FOURIER (1768-1830)

 $\boldsymbol{F}(\underline{\boldsymbol{S}}) = \int \rho(\underline{\boldsymbol{r}}) e^{2\pi i \underline{\boldsymbol{S}} \cdot \underline{\boldsymbol{r}}} d\boldsymbol{r}$ $\rho(\underline{\mathbf{r}}) = \int F(\underline{\mathbf{S}}) e^{-2\pi i \underline{\mathbf{S}} \cdot \underline{\mathbf{r}}} dS$

For repeating systems, such as a crystal (\underline{x}), the integral develops into a summation of the coefficients at discrete points in reciprocal space (\underline{h}):

 $\rho(\underline{x}) = \sum F(\underline{h}) e^{-2\pi i \underline{h} \cdot \underline{x}}$

What else did Joseph Fourier discover?

- For repeating systems, the integral develops into a sum
 - crystal with a repeating density, $\rho(\underline{x})$,
 - sum the coefficients at discrete points in reciprocal space, $F(\underline{h})$

Example of a Fourier Series

 From an Outline of Crystallography for Biologists Blow (2002)

- Conception of "resolution"
 - Higher order harmonics (<u>h</u>, Miller indices) provide more detail!
- Completion
 - All coefficients $|F(\underline{h})|$ contribute to the reconstruction of the map
 - Stronger amplitudes contribute more
 - Weaker amplitudes contribute less

Effects of Completion

Effects of Completion

Effects of Completion

Effects of Completion

- Conception of "resolution"
 - Higher order harmonics (<u>h</u>, Miller indices) provide more detail!
- Completion
 - All coefficients $|F(\underline{h})|$ contribute to the reconstruction of the map
 - Stronger amplitudes contribute more
 - Weaker amplitudes contribute less
- Importance of phases
 - The phases, $\varphi(\underline{h})$, are very, very important...
 - This is known as the *Phase Problem*

The Phase Problem

Duck & Cat Fourier Transforms

Courtesy of Kevin Cowtan http://www.yorvic.york.ac.uk/~cowtan/fourier/fourier.html

Duck & Cat Cross Phasing

If we wish to determine a structure with the Fourier series...

- Q: Can we *directly measure* phases?
 - No, although phases can be determined *indirectly*...
- Q: Can we apply random phases?
 - No, we will just get noise...
- Q: Can we set all phases to a *constant*?
 - No, this is akin to an auto-correlation (Patterson) function...
- Q: Can we *ignore* the phases?
 - No, because the <u>phases are derived from the positions of the</u> <u>scatterers!</u>
 - Thus, the inverse is also true, <u>the positions of the scatterers</u> are derived from the phases!

- Small molecules (< 200 non-H atoms)
 - Heavy Atom Method
 - A small number of relatively heavier atoms with dominate the phases...
 - Direct Methods
 - $\varphi(\underline{H}) + \varphi(\underline{H} \underline{K}) + \varphi(\underline{H} \underline{L}) = 0$
 - if $\underline{H} \underline{K} \underline{L} = \mathbf{0}$, and if $|E(\underline{H})|$, $|E(\underline{K})|$, $|E(\underline{L})| > 1.5$
 - Very high resolution data
 - beyond 1.2Å
- Macromolecules (> 200 non-H atoms)
 - Molecular Replacement
 - Six-dimensional search with a suitable starting model
 - > 30% sequence identity
 - Very big impact by AlphaFold2 et al.
 - Single & Multiple Isomorphous Replacement (SIR & MIR)
 - Add a heavy atom to the crystal structure
 - Hg, Pt, etc...
 - Single & Multiple-wavelength Anomalous Diffraction (SAD & MAD)
 - Collect at X-ray wavelengths near and/or above an absorption edge
 - Intrinsic heavy atom (P, S, Mn, Fe, Cu, Zn, Se, Br, etc...)
 - Incorporated heavy atom (Hg, Pt, I, lanthanides, polyoxometalate clusters, etc...)

Molecular Replacement

3-dimensional Rotation Search

3-dimensional Translation Search

Comparison of MAD & MIR

 Both methods use the heavy atom sites as <u>references</u> to phase for the crystal structure

The Effect of Anomalous Scattering

Variation of Anomalous Scattering Factors *f*' & *f*"

Energy (eV)

- Patterson Methods
 - $|\underline{\mathbf{F}}_{PH}(h)| |\underline{\mathbf{F}}_{P}(h)| \text{ or } |\underline{\mathbf{F}}_{PH}(+h)| |\underline{\mathbf{F}}_{PH}(-h)|$
 - Good for few heavy atoms
 - N < 5
 - Equivalent to heavy atom method
 - Small molecule metal complexes
- Direct Methods
 - Good for several heavy and equal atoms
 - 5 < N < 150
 - More complicated & statistical method
 - Originally used for organic molecules (C, H, N, O, etc...)

Hendrickson-Lattman Coefficients

$P(\varphi) = N \exp(A \cos(\varphi) + B \sin(\varphi) + C \cos(2\varphi) + D \sin(2\varphi))$

Courtesy http://ccp4wiki.org/~ccp4wiki/wiki/index.php?title=Hendrickson_Lattman_coefficients

MIR or MAD Phasing

Anomalous Scattering & The Breakdown of Friedel's Law

SIR Phasing

SAD Phasing

Different Phasing Methods

 $P(\varphi) = N \exp(A \cos(\varphi) + B \sin(\varphi) + C \cos(2\varphi) + D \sin(2\varphi))$

Courtesy McCoy & Read, 2010

SUNCHROTRON =

Interpretation, Refinement & Validation

Interpretation

- Tracing polypeptide mainchain
- Fitting of sidechains
- Solvent molecules
- Refinement
 - Constrained & Restrained
 - Low observable:parameter ratio
 - Least Squares & Maximum Likelihood
 - R-factors
 - Rwork, Rfree
- Validation
 - Checks on geometry (stereochemistry)
 - Bond lengths & angles, planarity, etc...
 - Clashes
 - Intermolecular contacts
 - Spurious density
 - $2F_{obs} F_{calc} \& F_{obs} F_{calc}$

 $R = \frac{\sum_{\underline{h}} \left| \left| F_{obs}(\underline{h}) \right| - \left| F_{calc}(\underline{h}) \right| \right|}{\sum_{\underline{h}} \left| F_{obs}(\underline{h}) \right|}$

The Experimental Set Up

The Basic Experimental Set Up

Source

- X-rays, electrons, neutrons
- Energy
- Bandpass
- Flux
- Focussing
- Cross-section size
- Divergence
- Instrumentation
 - Monochromators
 - Mirrors
 - Slits
 - Shutters

Sample

- Mounting
 - Loop
 - Capillary
 - Chip
 - Robotics?
- Environment
 - Temperature?
 - Humidity?
 - Laser?

Rotate crystal & collect images

• Detector

- Point, line, area
- Substrate
- Pixel size & number
- Frame rate
- Shutterless?

Goniometer

- Single or multi-axis
- Centering stages
- Motorisation
- Microscope
- Beamstop

Synchrotron Beamline: PROXIMA 2A

- 10 μm * 5 μm FWHM (H*V)
- □ Energy range 6 18 keV
- X-ray flux ~10¹² ph/s @ 12.65 keV
- X-ray flux density 2.5×10^{10} ph/s/µm²
- ^{20 μ m \Box Beam Stability <1 μ m (4-6 hours)}

50 µm

Sample centring					
	Standard Collection	ample: manually-mounted		ISPyB proposal	
ω: 270.00 🕽 🖨 🖨 🕲 🏉 10.0 🔻 κ: 0.00 📑 🧬 q: 560.00 🗦 🌮 Focus: -0.137 🗦 🖉 Zoom: 1 🛫	Amulation			Code: mx v - Password:	Login
	Oscillation start:	0 Range per frame:		Sample tree	
Phase	Number of images:	1800 Total range:	0	Mode: Sample changer ‡	Show SC-details
Front: 0 2 2 Back: 10 2 2 Centre Save Line Grid Snapshot Select all Clear all Beam Auto Anneal Excenter Transfer	Girt image:	1	Full range	Sample:	😂 ISPyB
	First intege.		Putrange	Centring: Manual n-clicks	n-clicks: 3 step: 120.0
	Exposure time (s).	Detector mode.	- me	Filter	No filter *
	Kappa:	0.0012 Phi:	360		
	Energy (keV):	12.65 MAD	Ip: - 🗘	V Duck 1	- -
	Resolution (A):	6.776		1:1	-
	Transmission (%):	20		13	
	Shutterless			1:4	U
	Data location			1:5	
	Folder:			1:6	
	/nfs/ruche/proxima2a-spool/2019_Run1	1/com-proxima2a/2019-03-08/RAW_DATA		1:8	
				1:9	
	File name: prefix_1_#####.h5		Browse	1:10	
	Prefix prefix			1:12	
	Run number 1			1:13	
	Processing			1:14	
	N.o. residues: 200 Space group:	сС		1:15	
ALL AND AND A DESCRIPTION OF A DESCRIPTI	Unit cell:			▼ □ Puck 2	
				2:1	
	269° Run processing after collection			2:2	
	Run Dozor			2:4	
				2:5	
	Characterisation			2:6	
A MALE AND A	Helical Collection			2:7	
	Energy Scan			Queue history	
	XRF Spectrum			1 D	
	GPhL Workflows			Collect Queue	Pause
	Advanced				
	Collect Now		Add to queue	FrontEnd Safety shutter	Machine current
				disabled disabled	0
				Open Close Open Close	Machine state
	[2019-03-09 16:19:25] Data collection is a	enabled		Desclution	None
	[2019-03-08 10.19.23] Data contection is e	enabled		6.776 Å	Hutch temperature
				Current: 800.00 mm	21.7 C
150 µm				Set to: 🛛 🗛 🛊 🖨	Remeasure flux!
				Transmission	Cryostream
100 Mm				Current:	In place temperature: 290.0 K
				Set to:	Sample changer Low level alarm!
					refill Off
				Current: 12.6500 keV	Storage disc space
				Wavelength: 0.980 Å	
Graphics items				Set to: keV 🛟 😜	

- State: - Diffractometer: Ready Sample changer: - Last collect: -

Steps in a Diffraction Experiment

- Align the beam & centre the crystal
 - Align the beam to the rotation axis
 - Center the crystal visually
 - Center with X-rays, if necessary
- Characterise
 - Small wedges of images
 - e.g. 10 × 0.1° at ω = 0°, 90°
 - Check centering
 - Check for diffraction
 - Quality and resolution
 - Inspect summed images ($\Delta \omega > 1^\circ$)
 - Check auto-indexing results
 - If implemented
- Collect
 - Adjust data collection parameters
 - Resolution or distance
 - Attenuation factor
 - Rotation step size ($\Delta \omega$)
 - Set starting angles (ω_{start})

Data Processing

Ewald Construction & Experiment Geometry

Indexing

- Generate all vectors
 between spots in
 "Reciprocal Space"
- Find the "common vectors"
- Determine a "Reduced Cell"
 - a*, b*, c*, α*, β*, γ*
- Assign Miller indices (h,k,l) to each spot
- Transform to all lattices
 - Calculate a penalty

- 14 Bravais Lattices
- 7 Lattice Systems
 - Trinclinic (a = anorthic)
 - $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
 - Monoclinic (m)
 - $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
 - Orthorhombic (o)
 - $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$
 - Tetragonal (t)
 - $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$
 - Rhombohedral (r)
 - $a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$
 - Hexagonal (h)
 - $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$
 - Cubic (c)
 - $a = b = c, \alpha = \beta = \gamma = 90^{\circ}$
- Centering
 - Primitive (P)
 - Axis centered (A,B,C)
 - Body-centered (I)
 - Face-centered (F)
 - Rhombohedral (R)

simple cubic

body-centered cubic

face-centered cubic

simple tetragonal

body-centered tetragonal

simple body-centered orthorhombic orthorhombic

base-centered orthorhombic

face-centered orthorhombic

rhombohedral hexagonal

monoclinic

simple base-centered

simple monoclinic

triclinic

Indexing & Space Groups

LATTICE-	BRAVAIS-	QUALITY	UNIT CEL	L CONST	ANTS (ANGSTRO	EM & 1	DEGREES)
CHARACTER	LATTICE	OF FIT	a	b	С	alpha	beta	gamma
* 44	aP	0.0	98.5	103.5	106.3	90.1	90.0	90.0
* 31	aP	0.0	98.5	103.5	106.3	89.9	90.0	90.0
* 35	mP	0.2	103.5	98.5	106.3	90.0	90.1	90.0
* 34	mP	0.6	98.5	106.3	103.5	90.1	90.0	90.0
* 33	mP	0.7	98.5	103.5	106.3	90.1	90.0	90.0
* 32	oP	0.8	98.5	103.5	106.3	90.1	90.0	90.0
* 25	mC	30.7	148.3	148.4	98.5	90.0	90.0	88.5
* 23	oC	30.8	148.3	148.4	Doccib	lo colutio	200	
* 20	mC	30.8	148.4	148.3	POSSID			
* 21	tP	31.4	103.5	106.3	- All eo	qually like	ely	
* 14	mC	52.1	142.9	142.9	- Usua	lly we se	lect the	e highest symmetry, but BEWARE the
* 13	oC	52.2	142.9	142.9	correc	t cell cou	uld have	e lower symmetry
* 10	mC	52.2	142.9	142.9				<u></u>
* 11	tP	52.3	98.5	103.5	106.3	90.1	90.0	90.0
4	hR	82.8	142.9	145.0	178.0	93.5	87.8	117.9
2	hR	83.0	142.9	145.0	178.2	93.6	87.7	118.0
3	cP	83.4	98.5	103.5	106.3	90.1	90.0	90.0
5	cI	248.9	144.9	142.9	148.3	59.7	58.3	62.1
39	mC	249.9	229.2	98.5	106.3	90.0	90.1	64.6
37	mC	250.1	234.3	98.5	103.5	90.0	90.1	65.1
38	oC	250.5	98.5	229.2	106.3	89.9		115 4
29	mC	250.5	98.5	229.2	106.3	89.9	Pos	sible polymorphism?
28	mC	250.6	98.5	234 4	103 5	90 0	– Pr	oteins can crystallise in more than
36	oC	250.7	98.5	234.3	103.5	89.9	one	lattice and snace group
41	mC	275.4	236.4	103.5	98.5	90.0	one	
30	mC	275.4	103.5	236.4	98.5	90.0	90.0	64.1
40	oC	275.4	103.5	236.4	98.5	90.0	90.0	115.9

Display Predictions

Integration

Data Quality Table

- Resolution limits
 - Shells of resolution
 - Determine high limit cut-off
- Completeness
 - Should be close 100%
 - Typically less in low and high resolution shells
- R-factors
 - Residual factor
- CC(1/2)
 - Pearson's Correlation Coefficient

• I / sigma

•

- Signal-to-noise ratio
- Anomalous
 - Differrences between I(hkl) and I(-h,-k,-l)
 - Pearson's Correlation Coefficient
 - Signal-to-noise ratio
 - R-factor (R-anom, but not shown)
- Multiplicity (not shown)
 - Number observed / Number unique
 - Very important

SUBSET OF I RESOLUTION LIMIT	INTENSITY D NUMBER OBSERVED	ATA WITH OF REFL UNIQUE	SIGNAL/NO ECTIONS POSSIBLE	ISE >= -3.0 A COMPLETENESS OF DATA	S FUNCTION R-FACTOR observed	OF RESOLU R-FACTOR expected	JTION COMPARED	I/SIGMA	R-meas	CC(1/2)	Anomal Corr	SigAno	Nano
5.17	10113	848	890	95.3%	3.3%	4.5%	10104	54.84	3.5%	99.9*	100*	19.960	309
3.67	19342	1587	1588	99.98	3.7%	4.6%	19340	55.66	3.9%	99.9*	99*	15.770	677
3.00	24467	2016	2016	100.0%	4.2%	4.6%	24467	53.71	4.48	99.9*	99*	14.968	891
2.60	28113	2383	2383	100.0%	4.7%	4.8%	28113	48.64	5.0%	99.9*	99*	15.249	1077
2.33	31467	2727	2727	100.0%	5.2%	5.0%	31467	43.92	5.4%	99.9*	99*	13.790	1245
2.13	34446	2999	2999	100.0%	5.4%	5.4%	34446	40.18	5.7%	99.9*	99*	12.101	1381
1.97	37481	3257	3257	100.0%	6.2%	6.3%	37481	33.94	6.5%	99.8*	99*	10.461	1514
1.84	36454	3478	3489	99.7%	8.3%	8.8%	36453	23.78	8.8%	99.8*	98*	7.638	1626
1.74	18105	3400	3771	90.2%	12.0%	14.2%	17860	10.35	13.2%	98.6*	94*	3.698	1417
total	239988	22695	23120	98.2%	4.5%	5.0%	239731	36.47	4.7%	99.9*	99*	11.244	10137

Scaling Diffraction Data

Scale equivalent reflections

- I(h,k,l) = I(-h,-k,-l) = etc...
- Depends upon crystal's "point group"

Corrections for:

- Incident beam variations
- Changes in illuminated volumes
- Detector inhomogeneities
- Effects of absorption
- Lorentz and polarisation effects
- Over-scaling is possible....
 - Squashing of anomalous signal
 - e.g. radiation damage

Automated Data Processing Software

- Common processing programs
 - XDS = X-ray Detector Systems
 - Wolfgang Kabsch & Kay Dietrichs
 - MOSFLM
 - Andrew Leslie & Harry Powel
 - DENZO-HKL2000
 - Z. Otwinowski & W. Minor
 - DIALS
 - DIAMOND Light Source
- Pipelines
 - AUTOPROC (Global Phasing Ltd)
 - XDS
 - XDSME (SOLEIL)
 - XDS Made Easy
 - XDS & CCP4
 - XIA2 (DLS)
 - DIALS or XDS
 - XDSGUI
 - XDS

Data File Formats

- Data formats
 - XDS (ascii)
 - XDS_ASCII.HKL
 - Header and colums
 - H,K,L,I,IOBS,XDET,YDET,PHI,...
 - CCP4 MTZ (binary with columns)
 - Project.mtz
 - Columns = H,K,L,I/SYMI.FOBS,SIGFOBS,...
 - DENZO SCA (ascii)
 - Project.sca
 - DIALS REFL
 - MessagePack with columns
 - Integrate.refl
 - SHELX (ascii)
 - H,K,L,F

3D Maps & Examples

Other multi-point MAD structures

Unknown Heavy Atoms: Finding a Nickel

Helical Sulphur SAD

- Unknown protein crystal
 - Diffracts to 1.4 Å resolution

The Ultimate Helical Scan

Radiation Damage & Heavy Atoms

Conclusions

Crystallography after 100 years

• Structural Chemistry

- CCDC crystal structures
 - > 1,300,000 entries total
 - > 18,000 entries added annually

Structural Biology

- PDB X-ray crystal structures
 - >180,000 entries total
 - >9k entries added annually

48 Nobel Laureates

- William Henry Bragg & William Lawrence Bragg (1915)
 - For their services in the analysis of crystal structure by means of X-rays
- David Julius & Ardem Patapoutian (2021)
 - For the discoveries of receptors for temperature and touch

Industrial applications

- Pharmaceutical
- Drug Discovery

Acknowledgements

- Websites
 - <u>http://www.lks.physik.uni-erlangen.de/diffraction/teaching.html</u>
 - <u>http://www.yorvic.york.ac.uk/~cowtan/fourier/fourier.html</u>
 - <u>http://ccp4wiki.org/~ccp4wiki/wiki/index.php?title=Hendrickson</u>
 <u>Lattman_coefficients</u>
- Dauter (1999) Acta Cryst. **D55**, 1703 -17
- Blundell & Johnson (1976)
- Drenth (1999)
- Als-Nielsen & McMorrow (2001)
- Blow (2002)
- Rhodes (2006)
- Rupp (2009)
- Read & McCoy (2010)
- Sherwood & Cooper (2010)
- International IUCr Volumes
- Numerous colleagues!
 - Especially: Richard Kahn, Roger Fourme,...

Email: william.shepard@synchrotron-soleil.fr