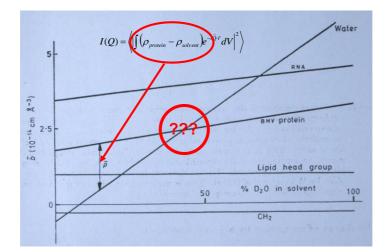


Neutrons and X-rays "see" matter differently

- Neutrons have spin and are isotope-sensitive (H¹ vs H²=D)
- Neutrons induce no radiation damage and penetrate bulk matter
- Low energy of neutrons allows to monitor thermal motions in samples
- Structure and dynamics can be probed (coherent vs incoherent scattering)

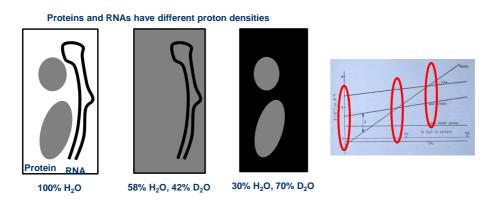


X-ray vs neutron scattering lengths

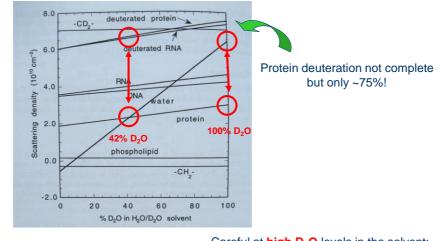
Atom Hydrogen Deuterium Carbon Nitrogen Oxygen Phosphorus Sulphur	Nucleus ¹ H ² H (D) ¹² C ¹⁴ N ¹⁶ O ³¹ P Mostly ³² S		$f_{x-ray} (\theta = 0^{\circ}) (10^{-12} \text{ cm}) \\ 0.28 \\ 0.28 \\ 1.69 \\ 1.97 \\ 2.25 \\ 4.23 \\ 4.5 \end{cases}$	(c) Nucleotide Base Adenine Guanine Cytosine	RNA RNA RNA RNA DNA RNA DNA	Chemical composition PN ₅ C ₁₀ O ₈ H ₁₁ PN ₅ C ₁₀ O ₅ H ₁₁ PN ₅ C ₁₀ O ₇ H ₁₁ PN ₅ C ₁₀ O ₈ H ₁₁ PN ₃ C ₉ O ₇ H ₁₁ PN ₃ C ₉ O ₇ H ₁₁ PN ₃ C ₉ O ₆ H ₁₁	H (ex) 3 2 4 3 3 2	$b_{tot} (H_2O) (10^{-12} \text{ cm}) (10^{-12} \text{ cm}) \\ 11 \cdot 23 \\ 10 \cdot 65 \\ 11 \cdot 81 \\ 11 \cdot 23 \\ 9 \cdot 26 \\ 8 \cdot 68 \\ \end{bmatrix}$	btot (D ₂ O) (10 ⁻¹² cm) 14·35 12·73 15·98 14·35 12·39 10·77	b (deuterated (10 ⁻¹² cm) 22.68 22.10 23.26 22.68 20.72 20.14
(a) Water	Hg Dg		δ (10 ⁻¹² cm Å ⁻³) -0.00562 +0.06404	Uracil Thyminine	RNA DNA	PN ₂ C ₉ O ₈ H ₁₀ PN ₂ C ₁₀ O ₇ H ₁₂	2 1	9·28 8·61	11·36 9·65	19.69 21.11
(b) Amino acids	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									
Amino acid Glycine Alanine	Chemical composition 1 C ₂ NOH ₃ 1 C ₃ NOH ₅ 1	$\begin{array}{c} b_{\text{tot}} (\mathbf{F}) \\ \mathbf{H} (\mathbf{ex}) & (10^{-13}) \\ \mathbf{H} & 1 \cdot 728 \\ \mathbf{H} & 1 \cdot 645 \end{array}$	² cm) (10 ⁻¹² cm) 2 · 769 2 · 686	b_{tot} (deuterated) (10 ⁻¹² cm) 4.85 6.852	V(Å ³) 66·4 91·5 141·7		$\overline{b} =$	$ ho_{\it protein}$ =	$\sum_j \frac{b_j}{V}$	
Valine Leucine Isoleucine Phenylalanine Tyrosine	C ₅ NOH ₉ C ₆ NOH ₁₁ C ₆ NOH ₁₁ C ₉ NOH ₉ C ₉ NOH ₉	1 1.479 1 1.396 1 1.396 1 4.139 2 4.719	2·437 2·437 5·180	10.854 12.850 12.850 13.51 14.09	141.7 167.9 168.8 203.4 203.6		Exa	mple glyci	ne in H <u>₂O:</u>	
Tryptophan Aspartic acid Glutamic acid Serine	C ₁₁ N ₂ OH ₁₀ C ₄ NO ₃ H ₄ C ₅ NO ₃ H ₆ C ₃ NO ₂ H ₅	2 6.035 1 3.845 1 3.762 2 2.225	8 · 118 4 · 886 4 · 803	16-45 8-010 10-01 7-432	237.6 113.6 140.6 99.1			+0.58+3*(-0 /ų = 2.68*	.37)]10 ⁻¹² cn 10 ¹⁰ cm ⁻²	1 /66.4Å 3
Threonine Asparagine Glutamine	C4NO2H7 C4N2O2H6 C5N2O2H8	2 2 · 142 3 3 · 456 3 3 · 373	4 · 224 6 · 580 6 · 497	9-431 9-704 11-70	122.1 135.2 161.1 176.2					
Lysine Arginine Histidine Methionine		4 1.586 5 3.466 1.5 4.959 1 1.764	9·714 6·521	15.12 17.00 11.73 11.14	180·8 167·3 170·8					
Cysteine Proline	CaNOSH ₅		4.013	7·137 9·516	105-6 129-3	Jaci	ot, B. (19	76) Rep. Prog	g. Phys. 39 , 91	1-953.

Frank Gabel: FASEM Lund March 2024

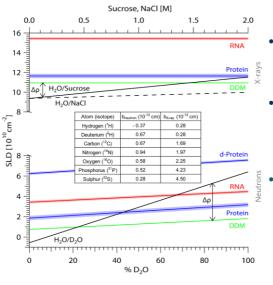
Contrast in H₂O/D₂O buffers


In practice, all biomacromolecules can be matched in SANS, i.e. made invisible!!! Not so easy with SAXS...

An analogon in optics: refractive index


Frank Gabel: FASEM Lund March 2024

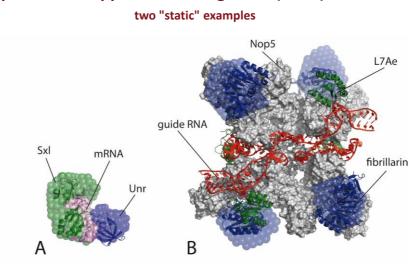
Contrast variation in SANS: natural contrast



Also possible for protein-protein complexes (deuteration)!

Artificial contrast using deuteration

Careful at high D₂O levels in the solvent: favours oligomerisation/aggregation!

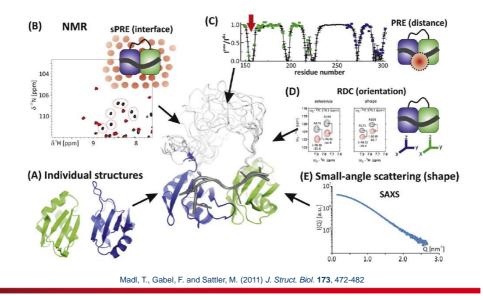

SAXS and contrast variation?

Accessible range of solvent electron densities is limited

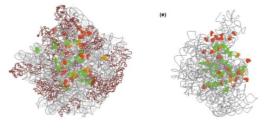
Frank Gabel: FASEM Lund March 2024

- Contrast agents (salt, sugar...) need to be added at high molarities and may not be inert to biomolecules
- Electron density of biomolecules cannot be modified globally

Mahieu & Gabel (2018). *Acta Cryst.* **D74**(Pt 8), 715-726 Gabel et al. (2019). *IUCrJ* **6**(4), 521-525 Gabel et al. (2022). *Acta Cryst.* **D78** (9), 1120-1130

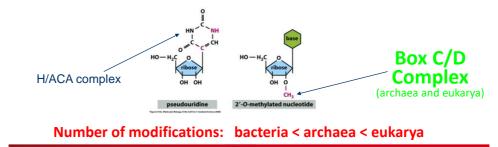


Sophisticated approaches using SANS (SAXS) and NMR:

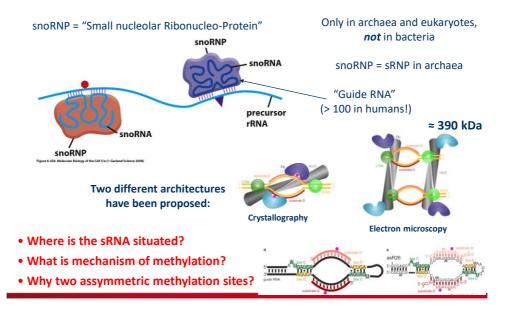

Gabel (2015) Small-angle neutron scattering for structural biology of protein-RNA complexes. Methods in Enzymology 558, 391-415.

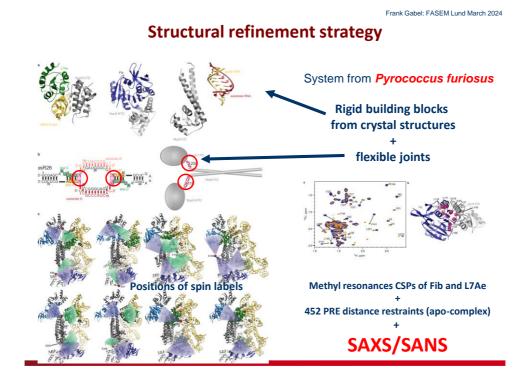
Frank Gabel: FASEM Lund March 2024

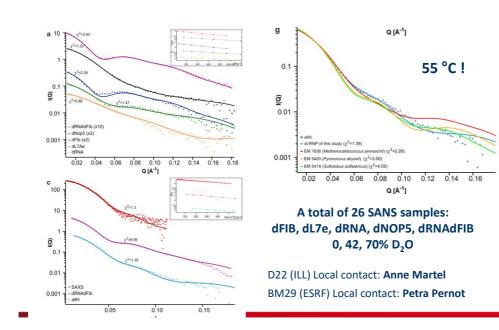
Combination of SANS and (solution) NMR: two complementary techniques


rRNA modifications and function

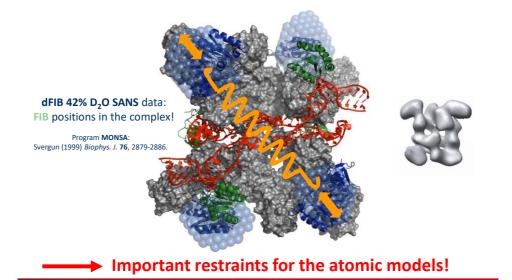
Dozens of modifications in structurally and functionally important (and conserved) regions; their number increases with "complexity" of organism.


Single mutations can be tolerated, absence of all modifications is lethal.

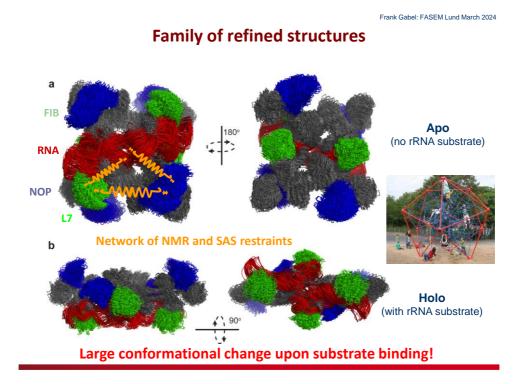

Decatur, W.A. and Fournier, M.J. (2002) rRNA modifications and ribosome function TIBS 27(7), 344-351.

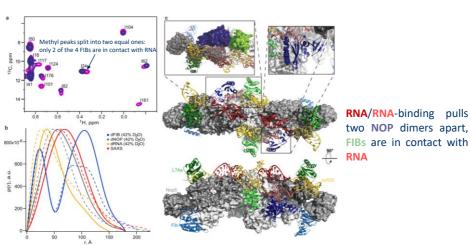

Frank Gabel: FASEM Lund March 2024

RNA modifications: snoRNPs, snoRNAs and box C/D



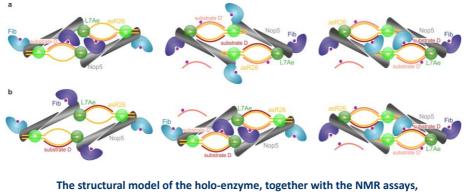
SANS (D22) and SAXS (BM29) data


Frank Gabel: FASEM Lund March 2024


Relative positions of FIB proteins within the complex from SANS data

Superior Sans data
Superior Sans

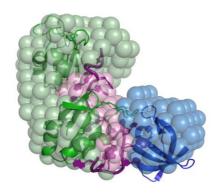
Lapinaite, A., Simon, B., Skjaerven, L., Rakwalska-Bange, M., Gabel, F. and Carlomagno T. (2013) The structure of the box C/D enzyme reveals regulation of RNA methylation. *Nature* **502**(7472), 519-523.



The holo complex

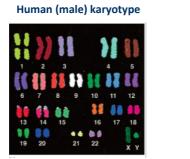
Large conformational change upon substrate (RNA) binding to an elongated form (SAXS/SANS+ 257 PRE distance restraints)

Proposed model for the sequential methylation and conformational changes

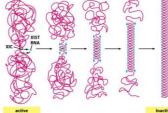

suggests that methylation at the two sites occurs in a sequential, well-defined order!

Implications on folding pathways for ribosome...

Financial support by DFG grant CA294/3-1, EU FP7 ITN project RNPnet (contract number 289007) and by the EMBL.

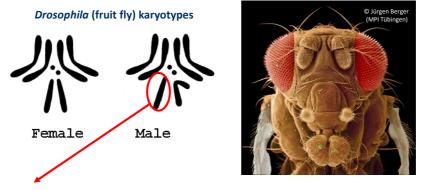

A novel mechanism for translational regulation in Drosophila melanogaster

Hennig J, Militti C, Popowicz G, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, and Sattler M (2014). Structural basis for the assembly of the SXL-UNR translation regulatory complex. *Nature* 515(7526), 287-290.


Frank Gabel: FASEM Lund March 2024

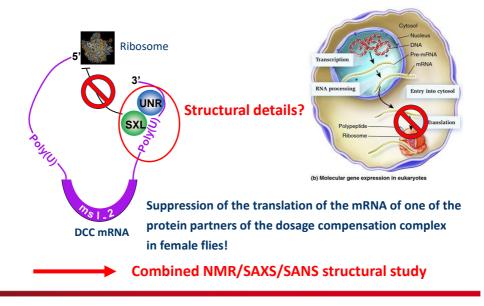
Dosage compensation

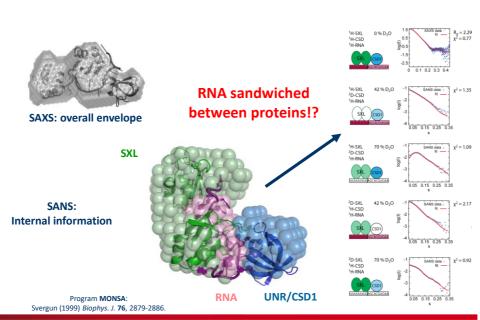
XIST gene silencing system in female mammals



Unequal proteins amounts from XX and XY pairs: needs compensation mechanisms

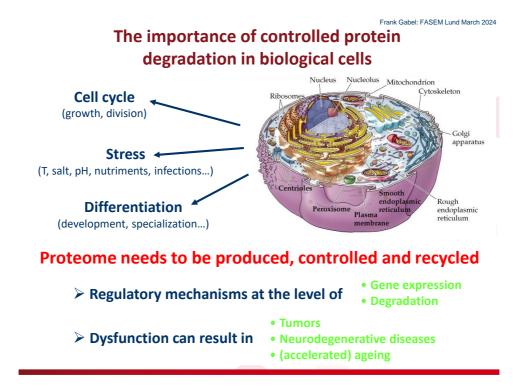
(Klinefelder syndrome in humans: XXY)

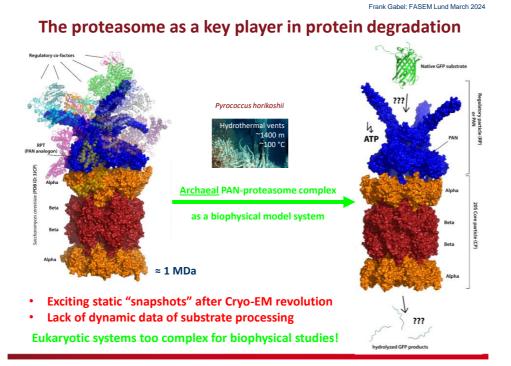

Dosage compensation in D. melanogaster



- Up-regulated by " DCC" (<u>D</u>osage <u>c</u>ompensation <u>c</u>omplex) constituted of 5 proteins and 2 non-coding RNAs
- Female-specific protein "SXL" (sex-lethal) silences the expression of a protein of the DCC complex in females by binding to its mRNA transcript and inhibiting its interaction with the ribosome

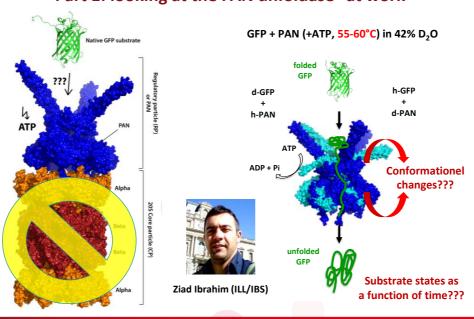
Translational repression in *D. melanogaster* dosage compensation

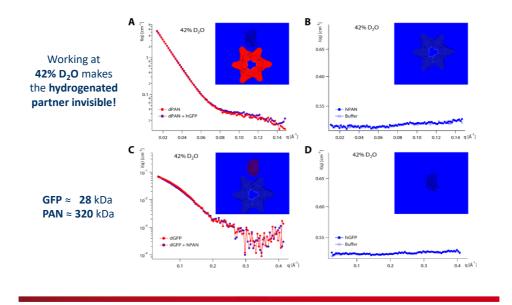

SANS-specific information


Frank Gabel: FASEM Lund March 2024

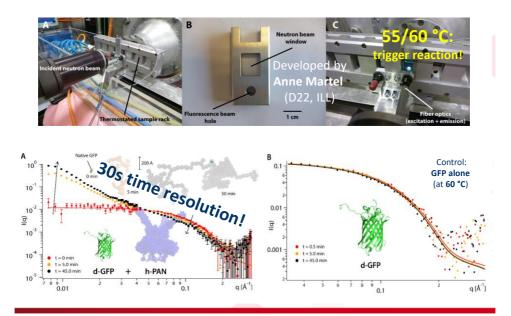
Frank Gabel: FASEM Lund March 2024

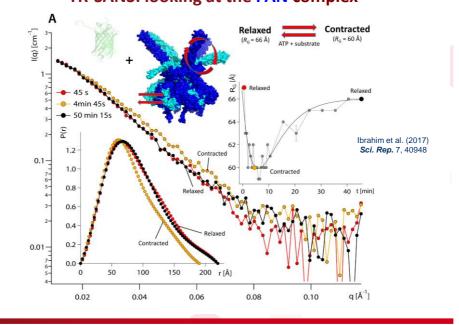
Acknowledgements 'SXL'



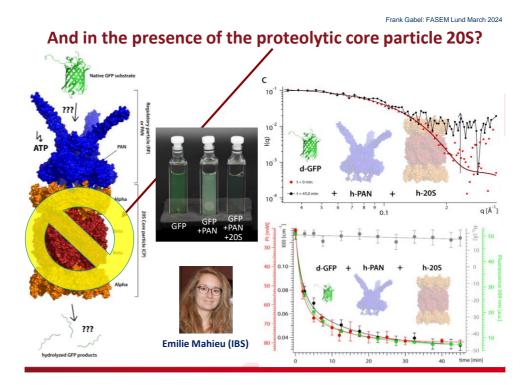


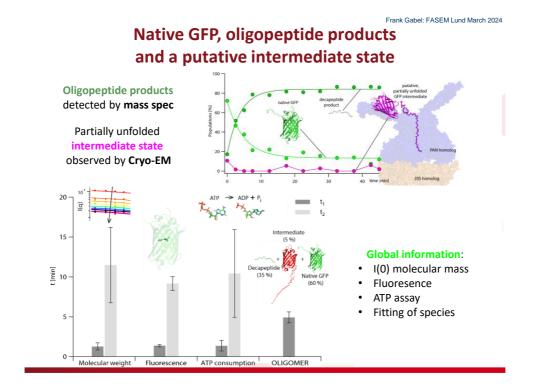
14

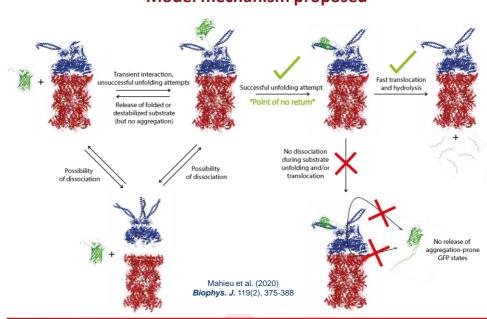

Part 1: looking at the PAN unfoldase "at work"

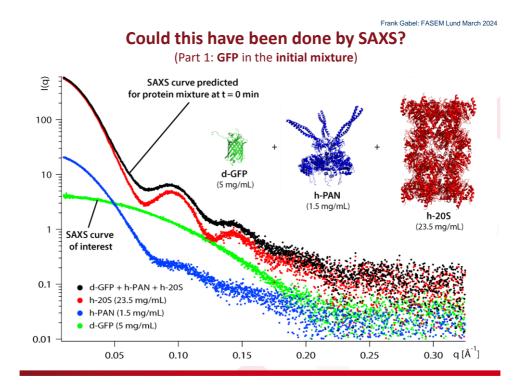


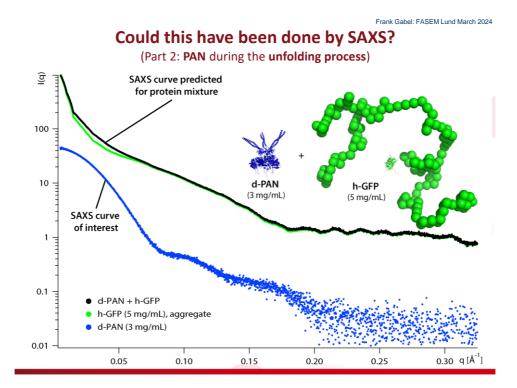
SANS, deuteration and contrast matching

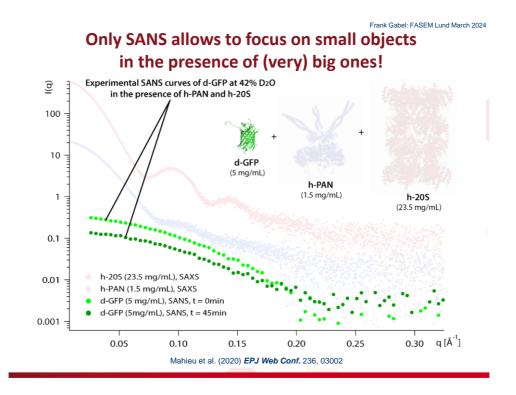

Frank Gabel: FASEM Lund March 2024

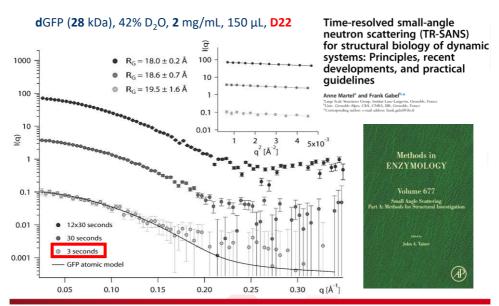

TR-SANS: looking at the GFP substrate










Model mechanism proposed

Frank Gabel: FASEM Lund March 2024

Conclusions

- TR-SANS allows to reach sub-minute time-resolution
- Combinations with optical spectroscopy possible
- Insight into dynamic processes of important biological systems
- Complementary to "static" techniques (Cryo-EM, crystallography...)
- Importance of selecting an "adapted" biological system ("trigger")
- Importance of (per-)deuteration labeling

Acknowledgements

 LSS group (ILL): Anne Martel, Susana Teixeira, Nico Carl, Lionel Porcar
 Martine Moulin

 D-lab (ILL): Martine Moulin, Michael Härtlein
 Martine Moulin

 Univ. Hanover/Helmholtz Braunschweig: Georg Krüger, Teresa Carlomagno: NMR! (just accepted in JMB)

The new « Biology, Deuteration, Chemistry and Soft Matter » (BDCS) group at ILL

Since December 1st 2023

Different locations on the EPN campus: come and visit us!

Thank you for your attention!

https://meetings.embo.org/event/24-sax

