

Sample preparation for neutron scattering: biodeuteration & protein crystallization.

Zoë Fisher

DEMAX platform @ ESS & Biology Dept @ LU

https://doi.org/10.3390/ma16103856

Biomolecules in neutron scattering are used for:

Macromolecular structures: Localization of hydrogen atoms

Enzyme mechanism, effect of mutations, drug binding

Atomic structures

3D structure of protein molecules

Small angle neutron scattering

Nanoscale structures: localization of components using H/D contrast

Deuterated POPC

Proteins, DNA/RNA, liposomes/ nanodiscs, membrane proteins, drug delivery systems

Solution Structures

Size and shape of complexes in solution

Neutron reflectometry

Nanoscale structure membranes, and surfaces using H/D contrast

Membrane proteins/peptides, drug delivery systems, insertion, fusion

Surface structures

Structure & composition of surfaces

Borrowed & adapted from Hanna Wacklin-Knecht

What do we mean by deuterated biomaterials?

- Molecules from living organisms are abundant in hydrogen, spec. ¹H isotope
- Deuteration: replacing endogenous ¹H with ²H to greater or lesser extent through a variety of methods
- Nomenclature: *deuterated, perdeuterated, H/D exchange*

Carbon	С	1647
Hydrogen	Н	2565
Nitrogen	Ν	465
Oxygen	0	517
Sulfur	S	21

Formula: $C_{1647}H_{2565}N_{465}O_{517}S_{21}$

Total number of atoms: 5215

Different kinds of deuteration: chem vs. bio

 Chemical deuteration: organic synthesis of small molecules using either commercial deuterated precursors and deuterated solvents, or make the precursors/monomers in the lab using Parr reactor (pressure, temp, catalyzed H/D exchange).

 Biological deuteration: production of molecules under deuterated conditions in living cells (the rest of this talk)

H atoms have special neutron scattering properties

¹H has relatively small coherent scattering and very large background, while ²H (deuterium) has the opposite! ¹H also has negative scattering – leads to signal cancellation of neighboring atom; ²H (D) has positive scattering & low background – gives strong peaks in density maps

Neutron scattering lengths and cross sections Coh b Inc b Coh xs Inc xs Scatt xs Abs xs 1.7568 80.26 82.02 0.3326 -3.7406 25.274 1.7583 80.27 82.03 0.3326 5.592 2.05 7.64 0.000519 3H (12.32 a) 4.792 2.89 3.03 -1.04 0.14 0

https://www.ncnr.nist.gov/resources/n-lengths/

Purpose and extent of deuteration depends on technique

Determine position of hydrogen atoms in macromolecular structures

Neutrons enable contrast variation through selective deuteration of materials (SANS, NR, Imaging):

Different organisms are used for different molecules

*All of these can tolerate up to 99% D

Bacteria Escherichia coli (E. coli) Acetobacter xylinus (A. xylinus)	prokaryote	CPERSING W MINTER DE LA MARIA	Recombinant proteins Plasmid DNA Cardiolipin Cellulose
Yeast Pichia pastoris (P. pastoris)	eukaryote		Lipids Cholesterol, ergosterol Membranes Recombinant proteins
Algae Botryococcus braunii (B. braunii)	eukaryote		Total cell extract Endogenous proteins Lipids? Oil?

Biomass production in different amounts of D

Liquid growth media components – E. coli

	Component	g/L
Bulk solution	NH ₄ Cl	2.58
	KH ₂ PO ₄	2.54
	Na ₂ HPO ₄	4.16
	K ₂ SO ₄	1.94
Carbon source – choose 1	Glycerol	5
	Glucose	5
	d-algal extract	10 mL
		mg/L
Additives	FeSO ₄ ·7H ₂ O	20.0 (72 uM final)
	Trisodium citrate	88.0 (0.3 mM final)
	MnSO ₄ ·H ₂ O	5.0 (30 uM final)
	ZnSO ₄ ·7H ₂ O	8.60 (30 uM final)
	CuSO ₄ ·5H ₂ O	0.76 (3 uM final)
	Thiamine chloride	48.0
	MgSO ₄ ·7H ₂ O	670 (2.7 mM final)
H ₂ O/D ₂ O		up to 1 L

- Replace H_2O with D_2O
- Replace "normal" carbon source with deuterated carbon source (e.g. glucose or glycerol or cell extracts)
- A combination of these things to get partial labeling

Limitations in biodeuteration

- Limited number of species tolerate D₂O highly toxic in higher organisms (insects, mammals, plants) >30%
- Cells are not happy in D₂O: slow growth, low yields
- Requires a lot of very expensive D₂O and carbon source (e.g. glycerol-d8)

<u>2019</u>

 1g of glycerol-d8 for 300 SEK
 1 kg of D_2O for 3200 SEK

 2023
 1 kg of D_2O for > 16,600 SEK

 1g of glycerol-d8 for 2160 SEK
 1 kg of D_2O for > 16,600 SEK

(Lead times up to 26 weeks in some cases)

- D₂O we re-use it multiple times by rotary evaporation of spent cell media to recover the D₂O
- It is not 100% "clean" and some D is lost over time
- Carbon source: let's grow our own!

Botrycoccus braunii growing in D₂O

- Biodeuteration is needed, in demand but expensive
- Not technically difficult if you can grow the right microbe in deuterated media

Workflow: from gene to structure

Borrowed & adapted from Swati Aggarwal doi: 10.1016/j.pep.2021.105954

So we need crystals to get measurable diffraction data....but how do you *make* a protein crystal?

- Need mg amounts of ~95% pure, 1-50 mg/mL concentrated protein.
- Beneficial to characterize protein for solubility, purity, stability, and treat it gently (use fresh, don't lyophilize, don't repeat freeze/thaw etc).

Precipitant solution

- This is the liquid that you mix your protein with & that promotes crystal nucleation
- They contain chemicals that promote taking water away from the protein, effectively increases [protein] e.g. PEG, NaCl
- Usually includes a buffer (e.g. Tris) and sometimes additives (e.g. divalent cations, reducing agents, detergents)
- Often includes 'additives' that help improve crystals e.g. divalent cations, organics such as glycerol, metal salts like ZnCl₂, MgCl₂ and often reducing agents (DTT)

Ammonium sulfate

Polyethylene glycol (PEG) n=200-20 000

Methyl pentanediol (MPD)

Crystal formation: the Phase Diagram

Commercial screens can explore a vast crystallization "space" in the phase diagram (or be rather narrow).

Crystallization methods

• Vapour diffusion Hanging vs sitting drop

• Batch (under oil)

• Dialysis

https://hamptonresearch.com/growth 101 lit.aspx

Modifications to basic methods

<u>Can modify or adjust these methods by doing things that promote</u> <u>nucleation (formation of new crystals)</u>:

• Crystal seeding (micro or macro)

or simply growth:

• Crystal feeding

Crystal evaluation & imaging

Clear drop

Phase separation

- Or plate hotel with automatic imaging
- Visible light & sometimes UV option

UV helps us to distinguish protein crystals from salt crystals using protein intrinsic fluorescence

Heavy precipitation

Microcrystals

Single 3D crystal

Optimization of crystallization conditions

- Fine grid searches around initial conditions
- E.g. vary pH or precipitant concentration
- Try additives (e.g. ions, organics)
- Try substrates, inhibitors, ligands
- Metal chelators or reducing agents
- Detergents
- Vary temperature
- Different crystallization method
- Seeding methods (see earlier slides!)

amprenavir

Preparing crystals for data collection

- Can do diffraction measurements at room temperature or at cryo conditions (100 K, N2 gas)
- Various different crystal supports for harvesting and data collection

			The second secon	
Pros for RT	Cons for RT		Pros for cryo	Cons for cryo
No damage from freezing	Technically challenging (need to practice!)		Easy to do, standardized mounts	Need cryo conditions, freezing itself can damage xtal
No cryoprotectants, SEE or LN2	Sensitive proteins degrade, radiation damage!		Easy to store, preserve sensitive samples	Cryo-induced artefacts (glycerol, freeze-in conformations)
Observe structure closer to physiological conditions	Can't make complexes or trap reaction intermediates		Protect from radiation damage	Need for special SEE, LN2 consumables

DEMAX Platform

Chemical Deuteration

- Small organic molecules, monomers
- Lipids (e.g. POPC, SOPC, POPE)
- Surfactants (e.g. sugar-based)
- Novel organic molecules for various applications
- Separation & analysis of yeastderived lipids

Biological Deuteration

- Cell culture to produce deuterated biomass from *E. coli*, *B. braunii*, *P. pastoris*
- Extraction of recombinant soluble proteins, lipids, plasmid DNA, "other"
- Biophysical characterization of products

Protein Crystallization

- High- and low-throughput screening
- Fine screening & optimization in large volumes
- Support for room temperature crystal mounting & data collection
- X-ray testing (LU BAG at MAX lab)

Core team with technical support from LU & ILL + postdocs

Zoë

Anna

0.7 RE @ LU 0.2 analysis @ ILL

Hanna

Jia-Fei

User proposals

useroffice.ess.eu

- Issued 3 pilot calls for user proposals (2019, 2020, 2022)
- Rolling access is currently open until end of 2024
- User should register and submit proposals online (URL above)
- Please reach out to us before submitting a proposal!

Pilot call for chemical and biodeuteration support from the DEMAX platform

The Deuteration and Macromolecular Crystallisation (DEMAX) platform at ESS supports neutron users from the soft matter, biology, life sciences and chemistry research areas. The neutron techniques that these communities typically use include small angle scattering, reflectometry, single crystal diffraction, and spectroscopy. For steady state ESS operations, DEMAX is currently developing three areas of support: Biological deuteration (e.g. cell paste, soluble proteins, lipids, membranes), Chemical deuteration (e.g. small organic molecules, surfactants, phospholipids), and Crystallisation (large protein crystal growth).

6		
	Sign in	
2.101	Sign in	
Email		
200.110101020333.00		
Password		
-		
	SIGN IN	
Forgot password?	Don't have an account? Sign Up	
	ID SIGN IN WITH ORCID	
	Problems signing in?	

Support for deuterated materials

- DeuNet is an international network of ~15 labs/facilities
- DeuNet aims to facilitate access to deuteration services and customised dlabelling of molecules for use in a wide range of research areas.
- DeuNet promotes collaborations between labs, supports development of new methods for deuteration, and increases the visibility of labs to funders, users.
- DeuNet facilitates communication between each members and collaborators through regular meetings and user workshops.
- For information on members, access modes, please visit

https://deuteration.org

Thank you for your attention!

• Questions? Comments?

zoe.fisher@ess.eu

or

zoe.fisher@biol.lu.se