Statistical methods in SAXS and SANS

FASEM PhD School (March 2024)

Andreas Haahr Larsen Department of Neuroscience, University of Copenhagen

You will learn how statistics can:

- Help you to assess if a model is a good fit to data
 - Help you to adjust your model

Part I: use statistics to assess if a fit is good

Checklist: Goodness of fit

 10^{-1}

M1 [Isim_1.dat]

lsim_1.dat

0.20

0.25

M1 [Isim_1.dat]

Isim_1.dat

"chi-square":

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{I_i^{\exp} - I^{\text{mod}}(q_i)}{\sigma_i} \right)^2$$

"reduced chi-square":

$$\chi_r^2 = \frac{\chi^2}{\text{Expected }\chi^2} = \frac{\chi^2}{N-K}$$

Notation alert: As the *reduced* chi-square is always reported, "reduced" is often omitted.

So, when "chi-squared" is used, it (usually) refers to the "reduced chi-square"

K: number of *independent* model parameters*N*- *K*: the degrees of freedom

rules of thumb for the reduced chi-square:

 $\chi_r^2 \sim 1$: perfect fit

- $\chi_r^2 > 1.5$: model could be improved (or underestimated errors)
- $\chi_r^2 < 0.7$: overfitting (or overestimated errors)

Model								
Cate	Category Sphere			Model name sphere			Structure factor	pr
Sp						O None		0
Para	ame	ter	Value	Error	Min	Max	Units	
	\checkmark	scale	0.0007974	5.1057e-07	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	\checkmark	bac	4.39e-05	5.4412e-06	-00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	cm ⁻¹	
	sph	ere						
		sld	1		-00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 ⁻⁶ /Ų	
		sld	6		-00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 ⁻⁶ /Å ²	
>		radius	47.074	0.020065	0.0	00	Å	
Options Fitting		Fitting deta	ails				Fitting erro	
			Min rang	ge 0.001 Å-1				
P	olvo	100001010	y					2

Checklist: Goodness of fit

Normalized residuals:

$$\left(\frac{\Delta I}{\sigma}\right)_{i} = \frac{I_{i}^{\exp} - I^{\mathrm{mod}}(q_{i})}{\sigma_{i}}$$

Residuals and chi-square

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{I_{i}^{\exp} - I^{\text{mod}}(q_{i})}{\sigma_{i}} \right)^{2} = \sum_{i=1}^{N} \left(\frac{\Delta I}{\sigma} \right)_{i}^{2}$$

Runs statistics

- Independent on error estimates
- Reduced *R* values should be around one

$$R_r^L = \frac{R^L}{\text{Expected } R^L} = \frac{R^L}{\log_2(N-K) - 1} \sim 1$$
$$R_r^N = \left(\frac{R^N}{\text{Expected } R^N}\right)^{-1} = \left(\frac{R^N}{1 + 2N_+N_-/(N-K)}\right)^{-1} \sim 1$$

p-values can be calculated but are often not very useful for model comparison

Checklist: Goodness of fit

Are the parameters reasonable?

- Mean value close to expectation?
- Within expected range (min/max)?
- Be cautious if refined value equals min or max
- If error is large: → correlation between parameters

 Model name Structure factor

100% correlated

Checklist: Goodness of fit

Part II: use statistics to find the best model

Or, how to build our knowledge into the model

Motivation: structure determination with SAXS and SANS is an **ill-posed problem**

Motivation: structure determination with SAXS and SANS is an **ill-posed problem**

Inclusion of **molecular restraints**

(by reparameterization)

$\Delta \rho_1 V_{\text{tail}} = b_{\text{tail}}$

 $\Delta \rho_2 V_{\text{head}} = b_{\text{head}}$

Scattering lengths, $\boldsymbol{b}_{\text{head}}$ and $\boldsymbol{b}_{\text{tail}}$, can be calculated from the chemical composition

What do we achieve?

- Reduce from 5 to 4 parameters
- Can use prior knowledge:
 - measurements of V_{head} and V_{tail}
 - concentration estimate

Quantify our prior knowledge as probability distributions: "priors"

Goal: find the parameters (c, N, V_{head} , V_{tail}) that maximize the **posterior** probabilities

Leads to **regularized** problem, where $\Gamma = -2 \log(\text{Posterior})$ is minimized:

 α : adjusts the balance between prior and likelihood

Analogue: free energy (G), enthalpy (H) and entropy (S) G = H + T ST: temperature

a balance between likelihood and prior

Using a simulations as model

Example: structural ensemble of the AMPA receptor

a balance between likelihood and prior

Using a simulations as model

Add a potential to the simulation:

Important: Each structures should not fit the data, only the average "sample-and-select" methods not applicable for ensembles

Using a simulations as model

Add a potential to the simulation:

$$E_{\text{hybrid}} = E_{\text{forcefield}}(\mathbf{R}) + E_{\exp}(\mathbf{R}, \mathbf{w}, \text{data})$$

Alternative:

Directly use the data to change the force field "Bayesian update" of force field parameters (θ):

 $P(\theta | data) \propto P(\theta) P(data | \theta)$

Thank you for your attention!

I hope you got a *significantly* better understanding of how to use statistics in SAXS and SANS

A few links for further reading (very incomplete list):

Chi-square tests in SAXS/SANS:

Introduction: https://doi.org/10.1016/S0001-8686(97)00312-6

Error assessment: https://doi.org/10.1107/S1600576721006877

Runs test in SAXS:

Various runs tests: <u>10.26434/chemrxiv-2021-mdt29-v3</u> Specific on longest runs test: <u>10.1038/nmeth.3358</u>

Bayesian model refinement:

Analytical model: <u>https://doi.org/10.1107/S1600576718008956</u> Multiple datasets: <u>https://arxiv.org/abs/2311.06408</u> Combine with simulations: <u>https://doi.org/10.1371/journal.pcbi.1005800</u> Ensembles: <u>https://doi.org/10.1063/1.4937786</u> <u>10.1371/journal.pcbi.1006641</u>

MaxEntropy reweighting: <u>https://pubmed.ncbi.nlm.nih.gov/32006288/</u>

Reviews on combining simulations and experiments:

https://doi.org/10.1016/bs.pmbts.2019.12.006

https://www.science.org/doi/10.1126/science.aat4010

DOI: 10.1039/c5cp04077a