Statistical methods in SAXS and SANS

FASEM PhD School (March 2024)

Andreas Haahr Larsen
Department of Neuroscience, University of Copenhagen

You will learn how statistics can:

- Help you to assess if a model is a good fit to data
- Help you to adjust your model

Part I: use statistics to assess if a fit is good

Checklist: Goodness of fit

1) Look at the fit and chi-square
2) Residuals (and runs statistics) \square
3) Are the parameters reasonable?

is it a good fit??

"chi-square":

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{I_{i}^{\exp }-I^{\mathrm{mod}}\left(q_{i}\right)}{\sigma_{i}}\right)^{2}
$$

"reduced chi-square":

$$
\chi_{r}^{2}=\frac{\chi^{2}}{\operatorname{Expected} \chi^{2}}=\frac{\chi^{2}}{N-K}
$$

Notation alert:

As the reduced chi-square is always reported, "reduced" is often omitted.

So, when "chi-squared" is used, it (usually) refers to the "reduced chi-square"

K: number of independent model parameters N - K : the degrees of freedom
rules of thumb for the reduced chi-square:
$\chi_{r}^{2} \sim 1: \quad$ perfect fit
$\chi_{r}^{2}>1.5:$ model could be improved (or underestimated errors)
$\chi_{r}^{2}<0.7$: overfitting (or overestimated errors)

Data loaded from: |sim_1.dat
Model Fit Options | Resolution | Polydispersity I Magnetism
Model

Checklist: Goodness of fit

1) Look at the fit and chi-square

2) Residuals (and runs statistics)

3) Are the parameters reasonable?

Runs statistics

run2
run4
run1

- Independent on error estimates
- Reduced R values should be around one

$$
\begin{aligned}
& R_{r}^{L}=\frac{R^{L}}{\operatorname{Expected} R^{L}}=\frac{R^{L}}{\log _{2}(N-K)-1} \sim 1 \\
& R_{r}^{N}=\left(\frac{R^{N}}{\operatorname{Expected} R^{N}}\right)^{-1}=\left(\frac{R^{N}}{1+2 N_{+} N_{-} /(N-K)}\right)^{-1} \sim 1
\end{aligned}
$$

p-values can be calculated but are often not very useful for model comparison

$$
\bullet \text { Graph1 }
$$

Checklist: Goodness of fit

1) Look at the fit and chi-square
2) Residuals (and runs statistics)
3) Are the parameters reasonable?

Are the parameters reasonable?

- Mean value close to expectation?
- Within expected range (min/max)?
- Be cautious if refined value equals min or max
- If error is large:
\rightarrow correlation between parameters

Checklist: Goodness of fit

1) Look at the fit and chi-square
2) Residuals (and runs statistics)
3) Are the parameters reasonable?

Questions for Part I?

is it a good fit??

Part II: use statistics to find the best model

Or, how to build our knowledge into the model

Motivation: structure determination with SAXS and SANS is an ill-posed problem

Motivation: structure determination with SAXS and SANS is an ill-posed problem

Take-home message:
One SAXS/SANS dataset does not correspond
to a single, unique structure
However, SAXS is good at saying NO

Therefore: we must constrain the solutions to realistic models

- parameter limits
- choice of model

Inclusion of molecular restraints

(by reparameterization)
Number of detergents
example
scale, $R_{1}, R_{2}, \Delta \rho_{1}, \Delta \rho_{2} \rightarrow \mathbf{c}, N, V_{\text {head }}, V_{\text {tail }}$
$4 \pi / 3 R_{1}^{3}=N V_{\text {tail }}$
$4 \pi / 3\left(R_{2}^{3}-R_{1}^{3}\right)=N V_{\text {head }} \quad$ Volume of one head group
$\Delta \rho_{1} V_{\text {tail }}=b_{\text {tail }}$
$\Delta \rho_{2} V_{\text {head }}=b_{\text {head }}$

Scattering lengths, $\boldsymbol{b}_{\text {head }}$ and $\boldsymbol{b}_{\text {tail }}$, can be calculated from the chemical composition

What do we achieve?

- Reduce from 5 to 4 parameters
- Can use prior knowledge:
- measurements of $V_{\text {head }}$ and $V_{\text {tail }}$
- concentration estimate

Quantify our prior knowledge as probability distributions: "priors"

Core-shell Model

Inclusion of the priors in the model

Bayes Theorem for probabilities:

$\mathrm{P}\left(c, N, V_{\text {head }}, V_{\text {tail }} \mid\right.$ data) $) \propto \mathrm{P}(c) \mathrm{P}(N) \mathrm{P}\left(V_{\text {head }}\right) \mathrm{P}\left(V_{\text {tail }}\right) \mathrm{P}\left(\right.$ datal $\left.c, N, V_{\text {nead }}, V_{\text {tail }}\right)$

Priors ensure :

Given alternative models that fit the data well, the most realistic is selected

Goal: find the parameters ($c, N, V_{\text {head }}, V_{\text {tail }}$) that maximize the posterior probabilities

Leads to regularized problem, where $\Gamma=-2 \log$ (Posterior) is minimized:

α : adjusts the balance between prior and likelihood
a balance between likelihood and prior

Using a simulations as model

Example: structural ensemble of the AMPA receptor

$$
w_{\text {prior }, 2}=1.0
$$

posterior weights: $w_{\text {prior, } 1}=0.8$
$w_{\text {prior }, 2}=0.9$

$$
w_{\text {prior,3 }}=1.3
$$

$w_{\text {prior }, 3}=1.0$
$\ldots \quad w_{\text {prior }, 3}=1.3$

$$
S=\sum_{j=1}^{N_{w}} w_{j}\left(\frac{w_{j}}{w_{\text {prior }, j}}\right)
$$

a balance between likelihood and prior

Using a simulations as model

Add a potential to the simulation:

Important:
Each structures should not fit the data, only the average
"sample-and-select" methods not applicable for ensembles

Using a simulations as model

Add a potential to the simulation:
$E_{\text {hybrid }}=E_{\text {forcefield }}(\boldsymbol{R})+E_{\exp }(\boldsymbol{R}, \boldsymbol{w}$, data $)$

Alternative:

Directly use the data to change the force field
"Bayesian update" of force field parameters (θ) :
$\mathrm{P}(\theta \mid$ data $) \propto \mathrm{P}(\theta) \mathrm{P}($ data $\mid \theta)$

Thank you for your attention!
I hope you got a significantly better understanding of how to use statistics in SAXS and SANS

A few links for further reading (very incomplete list):

Chi-square tests in SAXS/SANS:
Introduction: https://doi.org/10.1016/S0001-8686(97)00312-6
Error assessment: https://doi.org/10.1107/S1600576721006877

Runs test in SAXS:

Various runs tests: $10.26434 /$ chemrxiv-2021-mdt29-v3
Specific on longest runs test: $10.1038 /$ nmeth. 3358

Bayesian model refinement:

Analytical model: https://doi.org/10.1107/S1600576718008956
Multiple datasets: https://arxiv.org/abs/2311.06408
Combine with simulations: https://doi.org/10.1371/journal.pcbi. 1005800
Ensembles: https://doi.org/10.1063/1.4937786
10.1371/journal.pcbi. 1006641

MaxEntropy reweighting: https://pubmed.ncbi.nlm.nih.gov/32006288/

Reviews on combining simulations and experiments:

https://doi.org/10.1016/bs.pmbts.2019.12.006
https://www.science.org/doi/10.1126/science.aat4010
DOI: 10.1039/c5cp04077a

