BioSAXS and Complementary Techniques 2

Mark Tully
Beamline responsible BM29 BioSAXS at the ESRF

STREAMLINE

Introduction

High Resolution Techniques

Dynamics - SAXS

Case Studies - LLPS

Case Studies - Antibodies

I BioSAXS and Complementary Techniques I 13 March 24 I Mark Tully

Partnership for Structural Biology (PSB)

STREAMLINE

SUPRAMOLECULAR STRUCTURE

- $2 \times$ Cryo-EM Titan Krios (operated by ESRF, IBS, EMBL \& ILL)
- Electron microscopy platform (operated by IBS)
- SAXS/SANS (operated by ESRF \& ILL)

Protein Crystallisation

- HT Crystallisation (operated by EMBL)
- HT Membrane Protein Crystallisation (operated by IBS)

3-D STRUCTURE ANALYSIS

- Cellular imaging (operated by IBS)
- Mass Spectrometry (operated by IBS)
- Molecular Biophysics platform (operated by IBS)
- AUC, BLI, CD, DLS, Fluorimeter, ITC, MST, MP, PAOL, SEC-MALLS, SPR

Protein Expression

- Cell Free (operated by IBS)
- Deuteration Lab (operated by ILL)
- ESPRIT (operated by IBS)
- Eukaryotic Expression Facility (operated by EMB)
- $6 \times$ ESRF Structural Biology Beamlines (operated by ESRF)
- FIP2 Beamline (BMO7) (operated by IBS)
- High Field NMR (operated by IBS)
- Neutron Diffraction instruments (operated by ILL)
- D19, LADI-III \& DALI
- The in crystallo Optical Spectroscopy Laboratory (iCOS)
https://www.psb-grenoble.eu/

PARTNERSHIP FOR SOFT CONDENSED MATTER
https://pscm-grenoble.eu/

Optical Spectroscopy

Optical microscopy

Solid interfaces

Calorimetry, Volumetry, and Thermal analysis
Liquid interfaces

Light Scattering

ESRF: The European synchrotron

ESRF: established by an inter-governmental convention signed by 13 member states

21 PARTNER COUNTRIES

13 Member states:
France
27.5\% Germany
Italy 24.0\% United Kingdom
Russia 10.5\% 6.0\%

Benesync 5.8\% (Belgium, The Netherlands) Nordsync
5.0\% (Denmark, Finland, Norway, Sweden)

Spain
Switzerland
4.0\%
4.0\%

8 Scientific associate countries: Israel
1.75\%

Austria
Poland
1.75\%
1.0\%

Portugal
1.0\%

India
Czech Republic
0.66\%

South Africa
0.6\%

Hungary
0.3\%
0.25\%
 44 beamlines 9000 scientific visits per year 2000 publications per year 30% of research is with industry

- opened to users 25/08/2020
- Investment of 150 M EUR
- Fourth generation source + new beamlines + data infrastructure
$3^{\text {rd }}$ generation - emittance H/V ~ 1000

I BioSAXS and Complementary Techniques I 13 March 24 I Mark Tully

- sample transfer: 5 to $200 \mu \mathrm{~L}$.
- cycle time (load-clean) ~ 60 s .
- Samples stored in 96 well plates or PCR tubes.
- Thermo-regulation:
- storage: $4-40$ ㅇ,
- exposure cell: $4-600 \mathrm{C}$

BSXCuBE - New Beamline Collection Software

BSXCuBE - New Beamline Collection Software

.H5 files encompass opensource data reduction pipeline, FreeSAS by Jerome Kiefer

NMR Spectroscopy

Adapted from J. Hutchings Biochem Soc Trans (2018) 46 (4): 807-816. https://doi.org/10.1042/BST20170351

Structural basis for Smoothened regulation by its extracellular domains

Amphipol A8-35

$X=0.35, Y=0.25, Z=0.40$
Figure 1A

Data Examples

Structural basis for Smoothened regulation by its extracellular domains

\square

NMR Spectroscopy

X-ray Crystallography
So, why do we need BioSAXS?

Single Particle Cryo-EM

Adapted from J. Hutchings Biochem Soc Trans (2018) 46 (4): 807-816. https://doi.org/10.1042/BST20170351

Dynamics - Computational

Course-Grain MD

Multiscale modelling

- Thermo-regulation:
- storage: $4-40^{\circ} \mathrm{C}$,
- exposure cell: $4-60^{\circ} \mathrm{C}$
- Allows temperature ramps
- Concentration series
- pH series
- Time series
(e.g. amyloid fibrillation)

- SEU developed at ESRF-BM29 in collaboration with EMBL Grenoble and EMBL Hamburg

Fixed Chip Holder

Standardized Chip Design
Standard fluid connectors

Sliding chip fixation

$\sim 5 \mu \mathrm{~L}$ Channels
$\sim 100 \times 100 \mu \mathrm{~m}$

Designed by Anton Popov with help from PSCM and Peter Van Den Linden

TREAMLIN

Designed by Bastion Schubert and Antonio Calio with help from PSCM and Peter Van Den Linden

Flowtest $2 \mu / / s$

BSA Bbiffieg/titlratiom S2framseframes

Ambient temperature sensing via ELF3 LLPS in plants

Jung, Barbosa, Hutin et al., 2020 Nature Silva CS et al.(2020). PNAS

- ELF3 is 700 amino acids with little secondary structure
- ELF3 is predicted to undergo phase separation. Can LLPS act as a mechanism for temperature sensing?

Liquid-liquid phase separation (LLPS)

Hypothesis: LLPS is a key factor for thermosensing by ELF3 in plants

$4{ }^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$

$4{ }^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$

Jung, Barbosa, Hutin et al. (2020), Nature

How can we structurally characterise ELF3 in the dilute and condensed phase?

Scattering curves and Kratky plots for different ELF3-PrD constructs from Arabidopsis and Brachypodium in the dilute phase- proteins appear as an multimeric species of an globular shape

Dilute Phase

SAXS, Electron Microscopy and Size Exclusion Multiangle Laser Light Scattering and AFM demonstrate formation of a large ~ 30-mer of ELF3 PrD

Fundamental unit of the PrD - homogeneous, globular oligomer of an intrinsically disordered polypeptide

- Condensed phase exhibits structure factor peak in scattering curve => long range ordering
- Appearance of peak is temperature dependent

Hydrogel phase

Revolution

 ellipsoid form factor

Structure factor

The parameters $s c 1$ and $s c 2$ are scale factors.

Overall ("total") background considering the contribution of:

1) the chains in the disordered proteins to the overall scattering, modeled by a Gaussian chain like scattering

$$
I_{\text {chain }}(q)=\frac{2\left[\exp \left(q^{2} R_{G}^{2}\right)-1+q^{2} R_{G}^{2}\right]}{\left(q^{2} R_{G}^{2}\right)^{2}}
$$

2) The diffuse background, a constant term;
3) The possible presence of large aggregates.

LLPS - SAXS Analysis

Parameter Description		@	${ }^{1}$	Q20
$a[\AA ̊]$	Lattice factor or, in this case, lamellar periodicity.	146.3(3)	146.1(6)	157.6(3)
$\sigma_{a}[\AA]^{\prime}$	Quantifies the distortion relative to an ideal 2D-hexagonal lattice, being zero for an ideal lattice.	0.106(6)	0.120(9)	0.070(6)
Γ	Full width at half maximum (FWHM) of the peak, the same for all peaks in the SAXS curve.	0.0138(1)	0.0140(2)	0.0156(2)
η	Varying from 0 to 1 , is the fraction of Lorentz function in the Pseudo-Voigt function.	0.21(4)	1.00(9)	0.07(3)
c	Constant ensuring that the product of form factor and structure factor fulfils the aquation for the Foroultivartant.	10(1)	10(8)	10(1)
$R\left[\AA{ }^{\text {a }}\right]$	Radius of the particles.	47.5(3)	44.9(7)	56.5(1)
$\sigma_{R}[\%]$	Kelative polydionorsity of R	$22(1)$	1017	18(1)
$R_{G}\left[\AA{ }^{\text {a }}\right]$	Radius of gyration related to the polymer-like scattering due to the disordered domains.	21(1)	32(9)	122(8)
$R_{\text {Agg }}\left[\AA{ }^{\text {a }}\right.$]	Radius of the aggregates.	375(11)	237(5)	334(9)
$\sigma_{R_{\text {Agg }}}[\%]$	Relative polydispersity of $R_{\text {Agg }}$.	48(1)	60(1)	50(1)
$s c_{1}$	Scale factor	0.056(3)	0.009(7)	0.037(1)
$s c_{2}$	Scale factor	0.0013(1)	0.003(2)	0.026(3)
$s c_{\text {Agg }}$	Scale factor	0.92(1)	0.93(1)	0.94(1)
$\begin{aligned} & \hline \text { back } \\ & \times 10^{-6} \end{aligned}$	Constant incoherent scattering contribution.	158(1)	372(1)	86(1)

AFM - Confocal microscopy

Wide-field fluorescence and AFM on same droplets

Height profiles- step-like pattern suggesting flat lamillar layers

Stiffness is variable within the droplet and due to the protein sequence microenvironments arise during aging

Macromolecular condensates are dynamically structured

Cartoon representation of LLPS formation

Petra Pernot	Databases:	Detector:	LPCV, Grenoble, France
Hayden Fisher	Alejandro De Maria Antolinos	Marie Ruat	Chloe Zubieta
Antonino Calio	Maxime Chaillet	Alejandro Homs	Stephanie Hutin
Anton Popov			
Data Analysis:	Mecanics/Electronics:	Exposure Units + SC:	Centre de Biologie Str
	Jonathan Gigmes	Raphaël Cohen-Abrahams	Montpellier, France
Jérôme Kieffer Martha Brennich	John Surr	Gergely Papp	Luca Costa
	Fabien Dobias	Florent Cipriani	Nessim Louafi
BLISS:	Thierry Giraud	Andrew McCarthy	
Antonia Beteva		Clement Sorez	
Marcus Oskarsson	New Flight tube:	Franck Felisaz	
	Pascal Theveneau		
BsXCube3:	$\therefore \%$	-\%	
Jean-Baptiste Florial Marcus Oskarsson	ESRF GREN		PARTNERSHIP FOR SOFT CONDENSED MATTER

streamline.esrf.eu

I BioSAXS and Complementary Techniques I 13 March 24 I Mark Tully

I BioSAXS and Complementary Techniques I 13 March 24 I Mark Tully

