

HIBEAM-NNBAR Machine learning Trabalho em andamento

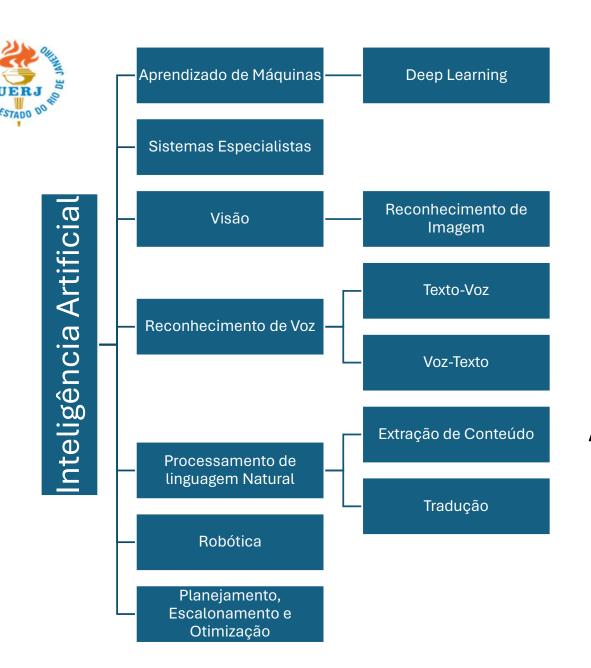
Jorge Amaral Universidade do Estado do Rio de Janeiro

Sumário

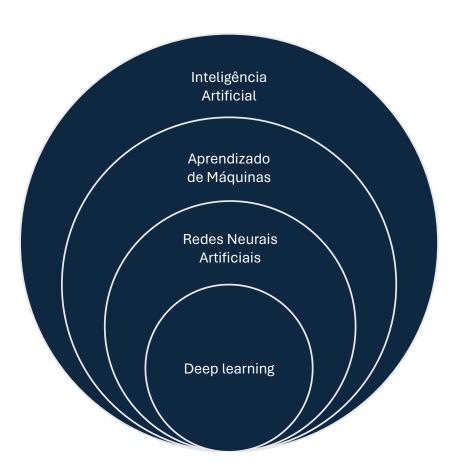
- Apresentação do LARISA
- Distinção entre Inteligência Artificial e Aprendizado de Máquinas
- Etapas da construção de um sistema de aprendizado de Máquinas
 - Exemplo: indígenas PIMA
- Uso modelos de aprendizado de máquina para separar o sinal do background com 100% de rejeição do background
 - Treinar um modelo
 - Explicar o que o modelo está fazendo
 - Possível implementação em Cut-based
 - Resultados
- Conclusões

LARISA

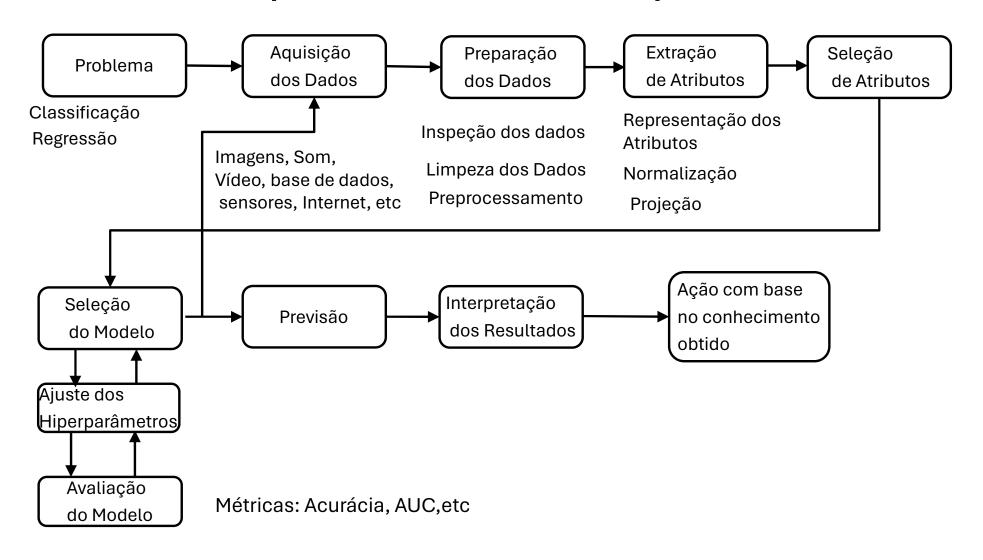
- LARISA (Laboratório de Redes Industriais e Sistemas de Automação) foi fundado em 07 de dezembro de 2012
- Credenciado na ANP no: 670/2015
- Membro do Centro de Inteligência Artificial do Rio de Janeiro (CIA-Rio)
 - Rede de pesquisadores em IA aplicado a petróleo e gás
- Nosso principal objetivo é contribuir com governos, empresas privadas e indústrias na oferta e aplicação de tecnologias com uso intensivo de inteligência artificial (IA), IoT e processamento digital de sinais em instrumentação.
 - http://www.eng.uerj.br/larisa/



- <u>Estudo de agentes inteligentes</u>: qualquer dispositivo que é capaz de perceber seu ambiente e realizar ações que maximizem sua chance atingir seus objetivos com sucesso!" (Russel & Norvig 2003, p.55).
- O termo "inteligência artificial" é frequentemente usado para descrever máquinas (ou computadores) que imitam as funções cognitivas que os seres humando associam com a mente humana, tais como o "aprendizado" e a "resolução de problemas". (Russel & Norvig, p.2)



Inteligência Artificial: Áreas Relacionadas



- Um ramo da Inteligência Artificial
- Surgiu graças as capacidades dos computadores atuais e da grande quantidade de dados disponíveis
- Estuda formas de proporcionar <u>a habilidade de aprendizado aos</u> <u>computadores sem que estes sejam explicitamente programados</u>
 - Reconhecimento de Escrita, Controle de Drones,
 Processamento de linguagem Natural entre outras .
- "Aprender a partir dos dados"
- Muitas vezes se usa o termo inteligência artificial quando estamos querendo dizer aprendizado de Máquinas

Arthur Samuel (1959).

Sistema de Aprendizado de Máquinas

Diabetes nos indígenas Pima (Arizona)

 A partir das informações coletadas em 768 mulheres:

Indicar aquelas que s\u00e3o afetadas por diabetes

• Problema de Classificação

Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988). <u>Using the ADAP learning</u> <u>algorithm to forecast the onset of diabetes mellitus</u>. *In Proceedings of the Symposium on Computer Applications and Medical Care* (pp. 261--265). IEEE Computer Society Press.

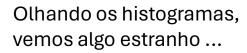
Coleta de dados

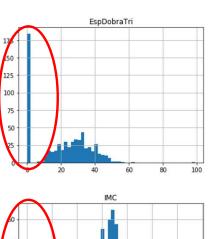
- Quantas vezes ficou grávida;
- Concentração de glicose após 2 horas
- Pressão diastólica
- Espessura da dobra do triceps
- Insulina (2horas)
- IMC
- Função de hereditariedade de diabetes
- Idade
- Tem Diabetes

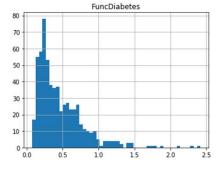
Estes dados foram rotulados por médicos!

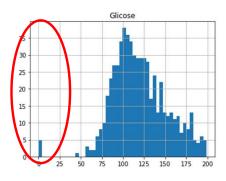


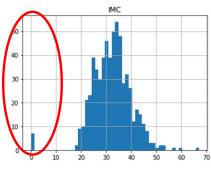
	NumVzGravida	Glicose	Pressao	EspDobraTri	Insulina2h	IMC	FuncDiabetes	ldade	TemDiabetes
0	6	148	72	35	0	33.6	0.63	50	1
1	1	85	66	29	0	26.6	0.35	31	0
2	8	183	64	0	0	23.3	0.67	32	1
3	1	89	66	23	94	28.1	0.17	21	0
4	0	137	40	35	168	43.1	2.29	33	1

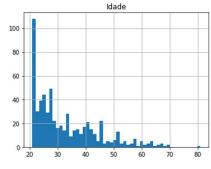


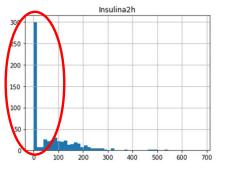


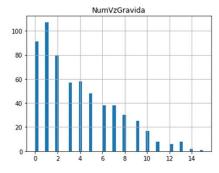

Preparação dos dados

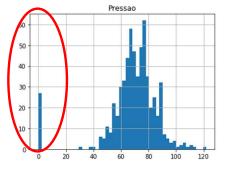


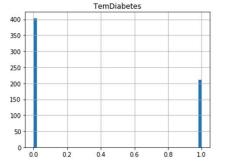








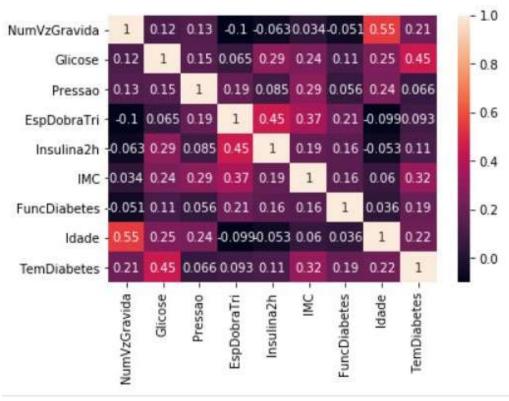




Seleção de Atributos

Métodos de Seleção

- Filtros
- Correlação
- Wrapper


Correlação

- Em probabilidade e estatística, correlação, dependência ou associação é qualquer relação estatística (causal ou não causal) entre duas variáveis ¹
- Informalmente, correlação é sinônimo de dependência

Métodos de Seleção

- Filtros
- Correlação
- Wrapper

Valores de Correlação baixos: Vamos usar todos os atributos

1 Bussab, Wilton de O.; Morettin, Pedro A. (2010). Estatística Básica 6ª ed. [S.l.]: Saraiva. p. 73.

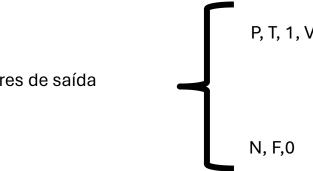
Seleção do Modelo

Métricas de Avaliação

Classificação Binária

Matriz de Confusão

Ρ


Previsto

Ν

P	N
TP	FP
FN	TN

Real

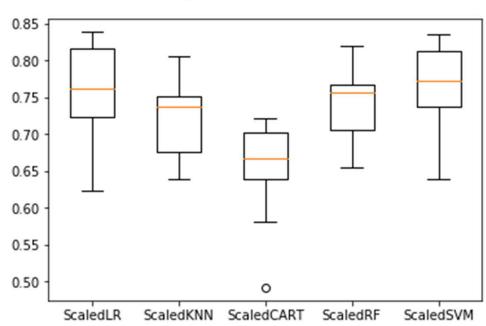
Dois valores de saída

$$Acur\'{a}cia = \frac{TP + TN}{TP + FN + FP + TN}$$

Sensibilidade = Eficiência =
$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$Especificidade = Rejeição = TNR = \frac{TN}{TN + FP}$$

Seleção do Modelo

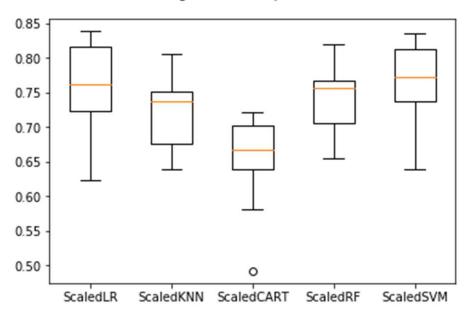


Avaliando os modelos com os hiperparâmetros default

Treino do modelo e busca de hiperparâmetros TASE Teste Estimar o desempenho em dados não vistos No treinamento

Algorithm Comparison

Melhor Modelo SVM: Acurácia = 76,5%



Ajuste dos hiperparâmetros

Algorithm Comparison

SVM Original: Acurácia = 76,5%

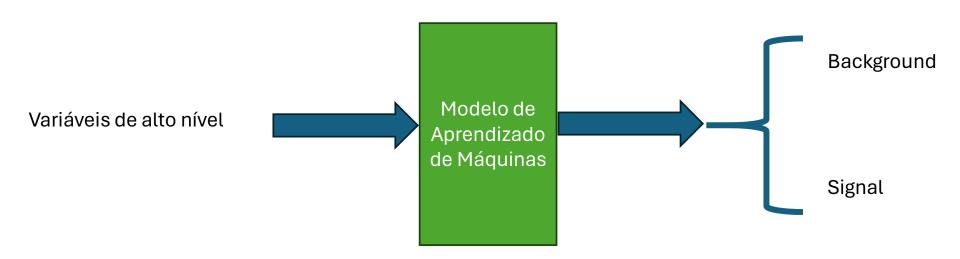
SVM com ajuste : Acurácia = 77,2%

Matriz de Confusão

Contusão	Р	N
P Previsto	TP 33	FP 10
N	FN 24	TN 87

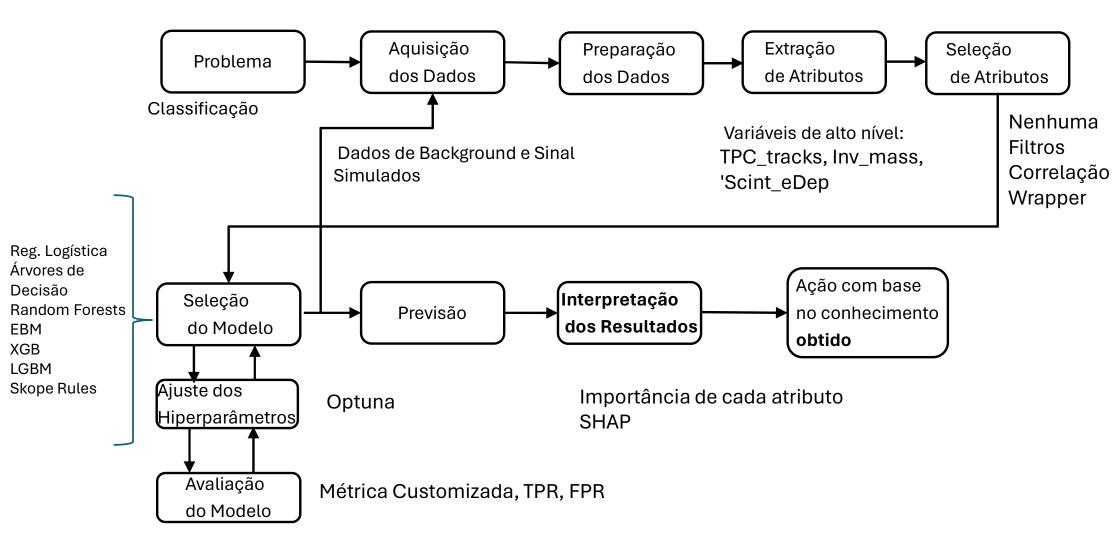
$$Acur\'{a}cia = \frac{TP + TN}{TP + FN + FP + TN}$$

generalização



Objetivo

 Usar modelos de aprendizado de máquina para separar o sinal do background com 100% de rejeição do background



Problema de Classificação Binário

Sinal : Nêutrons que foram convertidos em antinêutrons e depois aniquilados com um nêutron dentro de um núcleo de carbono dentro do alvo

Background: Raios Cósmicos

Sistema de Aprendizado de Máquinas

Algumas das variáveis de alto nível

- 'TPC_tracks': number of tracks recorded in the TPC
- 'Scint_eDep':Total energy deposited in the scintillator
- 'Scint_E_L': Longitudinal energy from the scintilator
- 'pi0_loose_num': number of events that passes the pi0 selection
- 'pi0_tight_num': number of events that passes the pi0 selection and falls into a narrower invariant mass range.
- 'Scint_up_frac_down': For pi0 like objects only fraction of energy from scintillator
- 'LeadGlass_up_frac_down': For pi0 like objects only. Fraction of energy from lead glass
- 'TPC_track_vertex_count', number of tracks that can be projected back to the foil in an event
- 'Inv_mass'
- 'pi_num': Number of pions in an event
- · 'sphericity'

The Swedish Foundation for Intern Cooperation in Research and High

- Todas as 49 variáveis
- Modelos
 - Regressão Logística, Árvores de Decisão, Random Forests, XGB, LGBM, EBM
- Normalização de variáveis (média = 0, variância = 1)
- Otimização de Hiperparâmetros : Optuna
 - Validação cruzada com 3 partes
- Métricas
 - AUC

Treino
Val
Teste

Treino do modelo e busca de hiperparâmetros

Encontrar o limiar para rejeitar 100% do background

Estimar o desempenho em dados não vistos no treinamento

N

Р

Ν

Р

Real

TN	F P
FN	TP

Predict

Rejeição=
$$TNR = \frac{TN}{TN+FP}$$

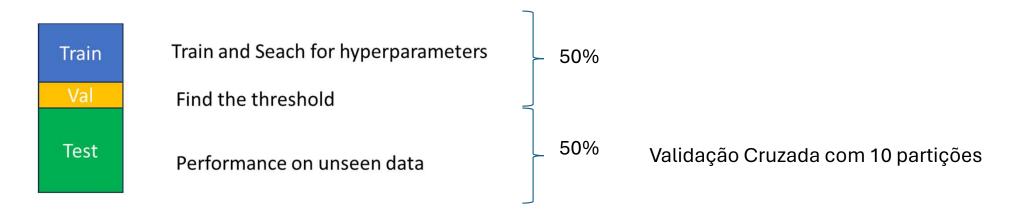
Efficiência =
$$TPR = \frac{TP}{P} = \frac{TP}{TP+FN}$$

- Resultado
 - O custo para rejeitar 100% de background sacrifica a eficiência do sinal
 - XGB a rejeição original é de 99,9% e a eficiência do sinal é de 98,9%
 - Após aplicação do limite, rejeição = 100% e eficiência é 0%.
 - Todos os verdadeiros positivos tornaram-se falsos negativos!!!
 - Todo mundo que era sinal foi classificado como background

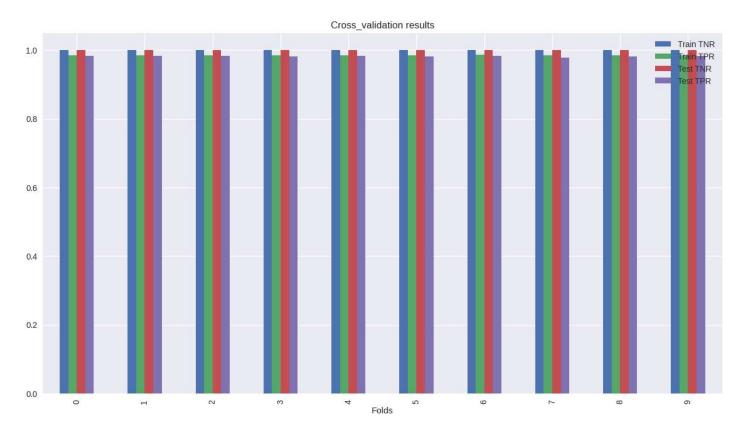
Alternativa

- Usar uma métrica customizada (MC) para aumentar o custo de um FP
- MC = 0*TP=0*TN + 1*FN + (beta-1)*FP)/beta
 - Beta = 10,100, 1000

- Foi atingida 100% de rejeição do background no conjunto de validação, mantendo uma eficiência alta
- Random Forest, LGBM, XGB

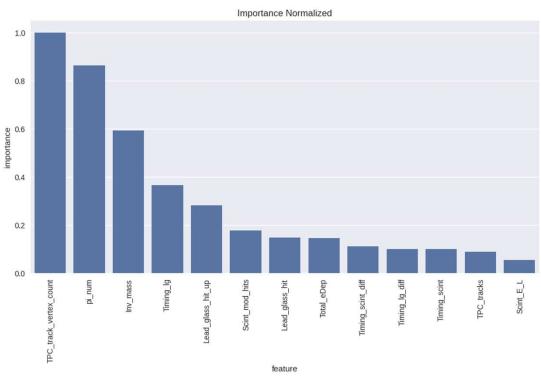

Modelo	Métrica	Rejeição antes	Eficiência antes	Limiar	Rejeição depois	Eficiência depois
Random Forest (WL)	Acurácia	99.91	99.45	0.973	100	92.92
Random Forest (optuna)	Customizada	99.88	99.44	0.933	100	95.81
XGB (optuna)	Customizada	99.86	99.71	0.999	100	98.71
LGBM (optuna)	Customizada	99.88	99.70	0.999	100	98.69

Os resultados do Experimento 1 generalizam?



Modelo	Rejeição no Treino	Eficiência no Treino	Rejeição no Teste	Eficiência no Teste
Random Forest	100%	98%	100%	96%
XGB	100%	98%	100%	96%
LGBM	100%	100%	100%	96%

Resultados do XGB na validação cruzada com 10 partições Resultados consistentes em todas as partições

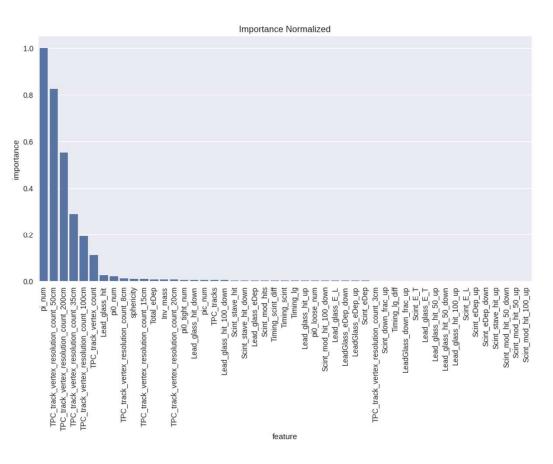


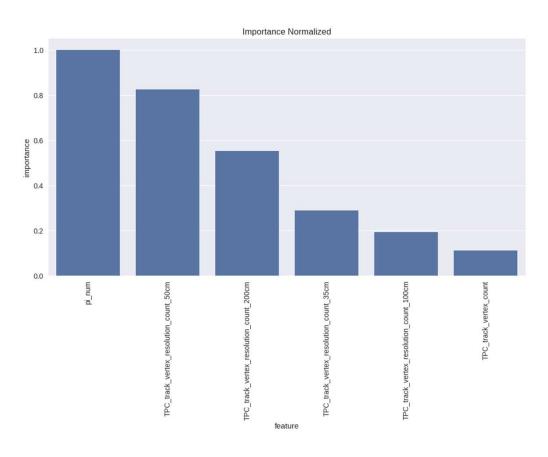
Objetivo: Estudar a importância de cada atributo e o seu impacto no resultado do modelo

Random Forest

TPC_track_vertex_count point and processors for the first point and processors for the

Random Forest com Importância normalizada > 0.05

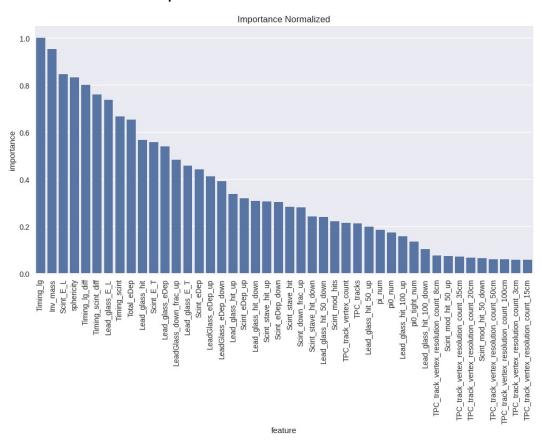




Objetivo: Estudar a importância de cada atributo e o seu impacto no resultado do modelo

XGB

XGB com Importância normalizada > 0.05



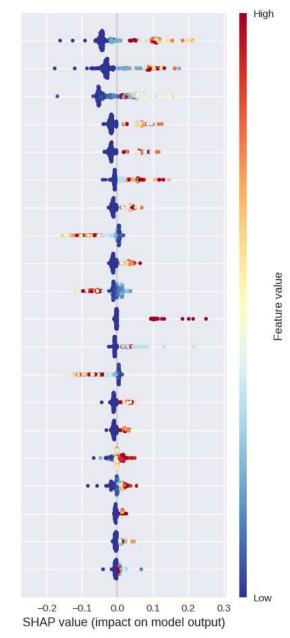
Objetivo: Estudar a importância de cada atributo e o seu impacto no resultado do modelo

LGBM

Immorphismose Nonmalaria de l'acceptante d'acceptante d'a

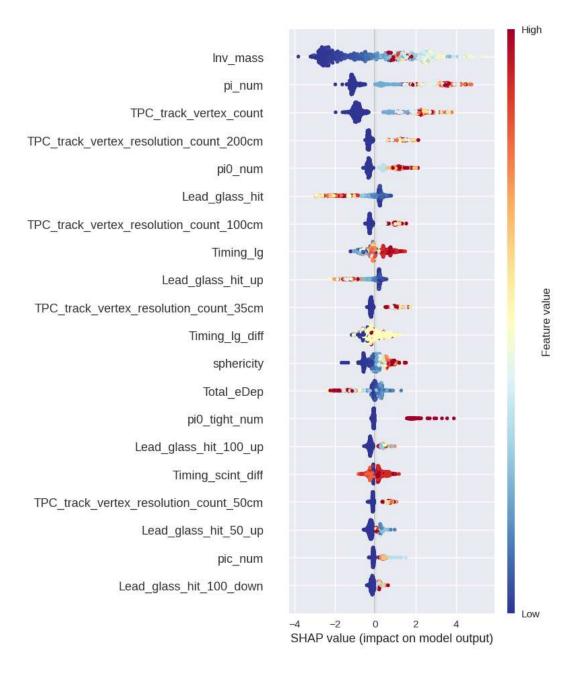
LGBM com Importância normalizada > 0.05

SHAP

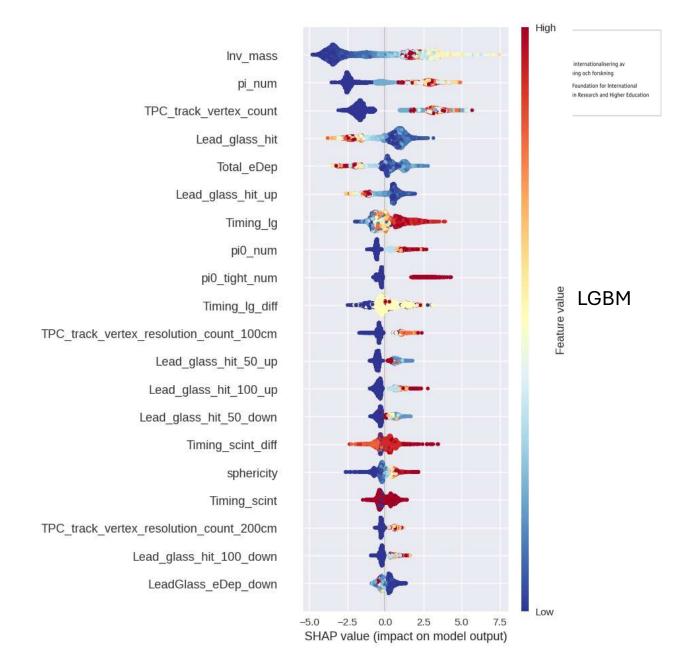


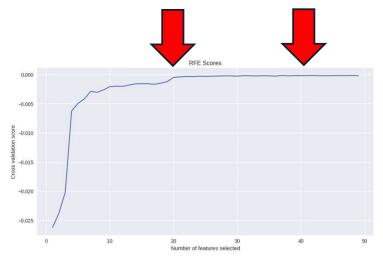
- SHAP (SHapley Additive exPlanations) de Lundberg e Lee (2017)6 é um método para explicar previsões individuais.
 - O objetivo do SHAP é explicar a previsão de uma instância x calculando a contribuição de cada atributo para a previsão
- SHAP é baseado nos Shapley Values
 - Para um jogo cooperativo qualquer, os *Shapley Values* distribuem uma quantidade total de contribuição, para cada jogador da equipe de forma justa
- Usando o SHAP podemos ver contribuição de cada atributo no resultado do modelo de forma de forma justa!

pi_num TPC_track_vertex_count Inv_mass TPC_track_vertex_resolution_count_200cm TPC_track_vertex_resolution_count_100cm pi0_num TPC track vertex resolution count 50cm Lead glass hit TPC track vertex resolution count 20cm Total_eDep pi0 tight num pic_num Lead glass hit up TPC_track_vertex_resolution_count_35cm TPC track vertex resolution count 15cm Timing_lg sphericity TPC_track_vertex_resolution_count_8cm Lead glass hit 100 up Lead_glass_hit_50_up

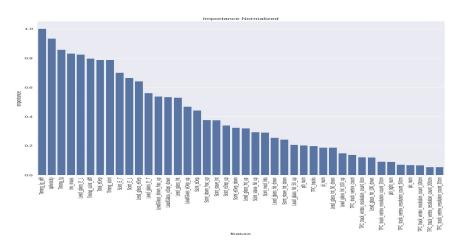


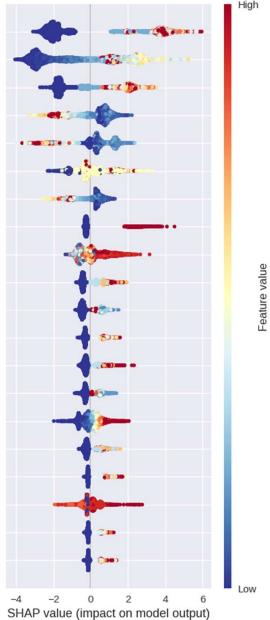
Random Forest





XGB




Experimento 3 Objetivo: Estudar a seleção de variáveis via RFE

Número ótimo de atributos encontrados: 42

-0.015

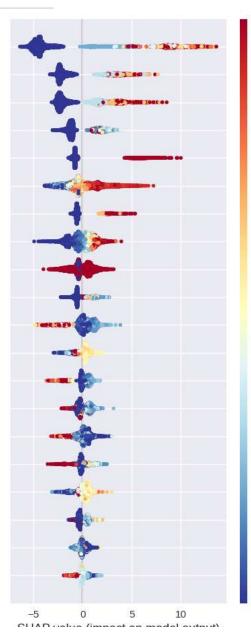
-0.025

Experimento 4

Objetivo: Estudar a seleção de variáveis via correlação

Correlação	Atributos corr	Num. tentativas OPTUNA	Rejeição no teste	Efficiência no teste
0.9	15	20	100%	98%
0.875	22	50	100%	98%
0.8625	24	50	100%	96%
0.85	25	60	100%	98%

Res cor A pa


Resultado que concorda com o RFE (o resultado melhora A partir de 24-25 variáveis

TPC track vertex count pic_num pi0 num Lead_glass_hit_50_up pi0_tight_num Timing_lg TPC track vertex resolution count 3cm sphericity Timing scint Lead_glass_hit_50_down Lead glass eDep Scint E L Lead glass hit down Scint_eDep_up LeadGlass eDep up TPC tracks

Lead_glass_E_L
Scint_eDep_down

LeadGlass_eDep_down

Lead_glass_E_T

Testes Iniciais com Skope Rules

- SkopeRules encontra regras lógicas com o *precision* alto (poucos Falso positivos e as funde para formar um único classificador
 - Encontrar boas regras é feito ajustando árvores de classificação e regressão a subamostras.
 - Uma árvore ajustada define um conjunto de regras (cada nó da árvore define uma regra
 - As regras são então testadas e aquelas com um precision alto são selecionadas e mescladas

$$Recall = TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$\Pr{e \ cision} = \frac{TP}{TP + FP}$$

Testes Iniciais com Skope Rules

 $Pr e cision = \frac{TP}{TP + FP}$

Scint_mod_hits <= 20.5 and Lead_glass_hit_up <= 32.0 and Total_eDep <= 1974.9874877929688 and pi_num > 0.5 and TPC_track_vertex_resolution_count_50cm > 1.0

Lead_glass_hit <= 43.5 and Lead_glass_hit_up <= 31.5 and Total_eDep <= 1974.9874877929688 and pi_num > 0.5 and TPC_track_vertex_resolution_count_50cm > 1.0

TPC_tracks <= 13.5 and Lead_glass_hit <= 43.5 and Total_eDep <= 1981.13525390625 and pi_num > 0.5 and TPC_track_vertex_resolution_count_35cm > 1.0

Resultados promissores : ainda sem ajuste de hiperparâmetros

Conclusões

- Foi possível encontrar 3 modelos que atinigir 100% de rejeição de background e alta eficiência do Sinal
 - Métrica customizada que pune falso positivos e alteração de limiar na saída do classificador
- A técnicas de Seleção de Atributos foram eficientes para reduzir o número de atributos, mantendo 100% de rejeição de background e alta eficiência de sinal
- As técnicas de explicação como a importância de atributos e o SHAP permitem um análise das previsões dos modelos desenvolvidos
- Skope rules forneceu resultados promissores que podem ser facilmente interpretados por qualquer pessoa

Trabalhos Futuros

- Analisar os resultados fornecidos pelo SHAP e pela importância de atributos para obter um novo conjunto reduzido de variáveis
- Continuar o aperfeiçoamento de métricas customizadas
- Investir nos modelos baseados em regras ou nas explicações baseadas em regras
- Desenvolver o nosso próprio modelo baseado em regras

Agradecimentos: Fundação Sueca para Cooperação Internacional em Pesquisa e Ensino Superior (STINT).

Faculdade de Engenharia da Universidade do Estado do Rio de Janeiro

Laboratório de Redes Industriais e Sistemas e Automação (LARISA)

Gabriel Cesario(UERJ) e Willian Lejon (Universidade de Estocolmo)

Jorge Amaral (UERJ)

jamaral@uerj.br jamaral@eng.uerj.br