Self-assembly of anisotropic colloids: microradian x-ray diffraction

Andrei V. Petukhov

Van 't Hoff Laboratory for Physical and Colloid Chemistry
Debye Institute for NanoMaterials Science

Universiteit Utrecht

What is colloid?

International Union of Pure and Applied Chemistry

"The term colloidal refers to a state of subdivision, implying that the molecules or polymolecular particles dispersed in a medium have at least in one direction a dimension roughly between 1 nm and $1 \mu \mathrm{~m}$."

Colloids =

 Brownian moversHieronymus Bosch

700 nm cubes in EtOH
$2 x$ real time

Colloid self-assembly: Entropy-induced order

fluid

crystal

Wijnhoven \& Vos

Using colloidal approach

Most studied shape of colloid is sphere

- Face Centred Cubic (FCC)

- Hexagonal Close Packed (HCP)

- Random Hexagonal Close-Packed (RHCP) is often observed
- Body Centred Cubic (BCC)

W.B Russel, Nature, 421, 490, 2003.

New architectures with other symmetries?

Anisotropic interactions (dipole-dipole)

A. Yethiraj \& A. van Blaaderen, Nature, 421, 513, 2003.
A.P. Hynninen et.al, PRE 72, 051402, 2005.

Theory: Bragg's law

Ordinary (atomic) crystals: $\mathrm{d} \sim \lambda$ \Rightarrow large diffraction angle 2θ

X-rays: $\lambda \sim 1 A$

Colloidal crystals: $d \gg \lambda$
\Rightarrow small diffraction angle 2θ

$$
\begin{gathered}
\sin \theta=n \lambda / 2 d \\
n=1,2 \ldots
\end{gathered}
$$

($10^{-4} \ldots .10^{-3}$ radian)

Scattering experiment

sample

High angular resolution is needed How do we get it?

- parallel beam?
- pencil beam?

A. Snigirev, V. Kohn, V, I. Snigireva, B. Lengeler, B, Nature, 1996

Microradian diffraction

- Peak width:

Long-range order
\square Peak tails:
fluctuations

Route 1: Magnetic dipolar spheres

System under study : Silica coated magnetite spheres

Sedimentation Conditions

Structures in the absence of magnetic field

Extended features (Bragg scattering rods) characteristic for RHCP crystals

Arrangements of colloids in FCC and HCP stacking

ABA Hexagonal close packed (HCP)

Face centered cubic (FCC)

Random Hexagonal Close Packed (RHCP) stacking

Real space RHCP structure

Reciprocal lattice of RHCP structure

Structures observed at different magnetic field

Structure?

Rotation Scan

As we rotate the crystal Peaks are moving towards increasing Q_{x} and decreasing Q_{y}.

Effectively the diffraction pattern at normal incidence ($\omega=0^{0}$) contains all the information

Modelling the structure

Conclusion 1

- Magnetic dipole-dipole interactions allow to manipulate colloidal self-organized architecture
- Without magnetic field the crystal structure is RHCP
- In the presence of magnetic field it is BCT
- The c/a ratio deviates by 15% from the value expected for touching hard spheres

Antara Pal, Vikash Malik, Le He, Ben H. Erné, Yadong Yin, Willem K. Kegel, Andrei V. Petukhov, Angew. Chem. Int Ed. 54, 1803, 2015.

Route 2: Introducing Shape Anisotropy

Colloidal Dumbbell

Scan along the length of the capillary

1. Isotropic \longrightarrow Crystal \longrightarrow Glass
2. Crystal is multi domain and made up of hexagonally packed layers.

What is the crystal structure?

1. Peaks in the first-order ring DO NOT vanish as we rotate the crystal

Not Bragg spots but the intensity is distributed along Bragg rods
2. Very strong diffraction peaks at specific angles (e.g., @ 25°)

Which correspond to FCC structure

Conclusion 2

- Overall FCC structure with a small amount of stacking fault which leads to the formation of Bragg rods.
- We DO NOT see any effect of anisotropy.
- Effective shape of the particles become spherical due to large Debye length. \rightarrow Plastic crystals

Antara Pal, Janne-Mieke Meijer, Joost R. Wolters, Willem K. Kegel and Andrei V. Petukhov, J. Appl. Cryst., 48, 238, 2015.

Outlook

- Recently: Probed the effect of salt concentration on the crystal structure.

ID-02, ESRF

System - Hollow Silica Cubes

Sol-gel method: $2 \mathrm{M} \mathrm{FeCl}_{3}+5,4 \mathrm{M} \mathrm{NaOH} @ 100^{\circ} \mathrm{C}$ for 8 days

Sugimoto et al. Colloidal Surfaces A 1993
Dissolve hematite core: Conc. HCl

Graf et al. Langmuir 2003,
Two step method

1. Fluorescent dye-ITC + APS +TEOS
2. TEOS

Superball Colloids

- Superball shape:

$$
\left|\frac{x}{a}\right|^{m}+\left|\frac{y}{b}\right|^{m}+\left|\frac{z}{c}\right|^{m}=1
$$

Packing of Superballs

$$
\left|\frac{x}{a}\right|^{m}+\left|\frac{y}{b}\right|^{m}+\left|\frac{z}{c}\right|^{m}=1
$$

$m=2$

$\mathrm{m}=3$

$\mathrm{m}=4$

$m=8$

$m \rightarrow \infty$

Optimal packings

Simulations of Superball Structures

Jioa et al.
Densest packings of superballs

$p(=m / 2)$

Ran et al.
Phase behavior of superballs

Marechal et al.
Phase behavior of parallel rounded cubes

$$
s=1 / q(=2 / m)
$$

Structure formed by Superballs

- Colloidal hollow silica cubes:

$$
m=2.9
$$

$\mathrm{m}=3.6$

Part B: Results: overview

Part B: Results: No order

Part B: Form factor of a superball

1. Flat faces
2. What is short in real space...

2D form factor of a superball with $\mathrm{m}=3.6$
Calculated by Janne-Mieke

Part B: Form factor of a superball

2D form factor of a superball with $\mathrm{m}=3.6$
Calculated by Janne-Mieke

Part B: Form factor of a superball

2D form factor of a superball with $\mathrm{m}=3.6$
Calculated by Janne-Mieke

Part B: Form factor of a superball

2D form factor of a superball with $\mathrm{m}=3.6$
Calculated by Janne-Mieke

Part B: Form factor of a superball

2D form factor of a superball with $\mathrm{m}=3.6$
Calculated by Janne-Mieke

Part B: Results: Rotator hexagonal

Part B: Results: Rotator hexagonal
 A
 B

Part B: Results: Rotator hexagonal A

Spherical form factor:

$$
{ }^{1}
$$

Part B: Results: Rotator hexagonal

 A

 A
 B

Part B: Rotator hexagonal

Part B: Results: Rhombic

Part B: Results: Rhombic

C

Part B: Rhombic

Part B: Rhombic: Stacking

C

Intensities:
Some peaks are hardly visible. Why?

Part B: Rhombic: Stacking

Part B: Results: $2 \times$ Rhombic
 A
 - B

C

Part B: Results: $2 \times$ Rhombic
A

C

D
Part B: Results: $2 \times$ Rhombic
A

C

D

$\underbrace{1}_{0}$

Conclusion 3

- Plastic and rhombic crystals are formed due to the effect of the particle shape depending on the osmotic pressure/concentration.
- Manipulation of the colloidal assemblies by shape is achieved.

J. Meijer, D. V. Byelov, L. Rossi, A. Snigirev, I. Snigireva, A. P. Philipse, and A. V. Petukhov,, Soft Matter 9, 10729 (2013)

Janne-Mieke Meijer, PhD thesis;
J.-M. Meijer, A. Pal, V. Meester, , H.N.W. Lekkerkerker, A.P. Philipse and A.V. Petukhov, in preparation. K.-A. van der Zon, BSc thesis, July 2015.

[2] A. Pal, J.-M. Meijer et al., J. Appl. Cryst., 48 (2๑७15) 238.
[3] J.-M. Meijer et al., PhD thesis.

Van 't Hoff Lab

- Antara Pal
- Janne-Mieke Meijer
- Kari-Anne v.d. Zon
- Jasper Landman
- Sonja Castillo
- Bas van Ravensteijn
- Joost Wolters
- Ben Erné
- Henk Lekkerkerker
- Wilem Kegel
- Albert Philipse

Acknowledgements

Team at the DUBBLE Beamline.

DUBBLE

- Guiseppe Portale

Team at the ID02 Beamline

- T. Narayanan
- S. Prevost

Collaborators at UCRIVERSIDE

- Vikash Malik
- Le He
- Yadong Yin

Thank you for your attention!

