

Test beamline (TBL) @ESS

15 April 2024

Test beamline (TBL) Team

Thawatchart Chulapakorn TBL Instrument Scientist

Robin Woracek TBL Instrument Scientist

Mary-Ellen Donnelly Instrument Operations Engineer

Alejandro Tobias Quispe Mamani TBL Lead Engineer (80%) *Will slowly transition into new role*

Michaela Eriksson Design Engineer (70%) *Consultant*

Gabor Laszlo NSS Lead Engineer (prev. TBL Lead Engineer)

Douglas Di Julio Neutron Physics

Irina Stefanescu Detector Scientist

Test beamline (TBL)

□ Recap: What do we actually want to do?

□ How do we want to do it?

Overview of Layout

□ Spectrum & Shielding & Flux

Detectors

□ Feedback & Discussion

What do we actually want to do?

The Test Beamline (TBL) is designed to validate the successful commissioning of the ESS spallation source. The beamline is located in direct line-of-sight to the neutron moderator and will allow characterization of **fast to cold neutrons as well as prompt gammas**.

The TBL design is simple and consists of a **changeable pinhole** and a **double-disk chopper**. The modular designs allows for future upgrades.

The goal of the TBL is to characterize/support:

- Characterization of the ESS moderator system
- Proton beam stability/Moderator stability
- Spatial distribution of neutron beam
- Characterize neutron spectrum
- Pulse-shape of cold-thermal neutrons
- Detectors and data processing systems
- Sample (e.g. singe crystal) alignment
- Simple imaging and diffraction experiments

See ESS-0420218 "Early operations of ESS and prerequisites for first scientific results" for more details

The Goal – EOC definition for council

- Delivery of an accelerator-based long-pulse neutron scattering source capable of 2MW beam power on target with each parameter **demonstrated separately**
 - Duty factor (14 Hz, 2,86 ms beam pulse)
 - Beam energy (0,800 GeV)
 - Peak proton current accelerated (62,5 mA)
 - Source power > 1MW, reliability > 80%
- 15 neutron scattering instruments delivered and installed, of which
 - 10/6 are in the User Programme (P0/P80)
 - 5/9 are in hot commissioning with beam (P0/P80)
- Test beamline neutron flux for beam energy of 0,570 GeV measured as at least:

	threshold value	objective value
	n/sr/p over a 3x6 cm ² area	n/sr/p over a 3x6 cm ² area
cold brightness	3.58E-03	8.96E-03
thermal brightness	2.56E-03	6.40E-03

- Infrastructure supporting user programme operational (e.g. user office, data management, sample environment, user labs, central polarisation service)
- Trained staff, operating permits, and system documentation in place

For Information Moderator

MARK-I: initial moderator MARK-II: (neutronically optimized moderator)

For Information

Target - Moderator

beamports

For Information

Target - Moderator

TBL Detector in direct line of sight

Test beamline (TBL)

Recap: What do we actually want to do?

□ How do we want to do it?

Overview of Layout

□ Spectrum & Shielding & Flux

Detectors

□ Feedback & Discussion

Test beamline (TBL)

Recap: What do we actually want to do?

□ How do we want to do it?

Overview of Layout

□ Spectrum & Shielding & Flux

Detectors

□ Feedback & Discussion

Location in Facility: W11 (North Sector)

TBL Status (SPI: 0,96 SV: -739kSEK)

Start Int. CC: Sep 2024 TG5/SAR mtg: Dec 2024 iSRR mtg: Feb 2025 Ref. Component **BBGOA** (delivered) 15 Manufactured: Jun '24 Flight Tube 1 2 Manufactured: May '24 Installation: Aug '24 Installation: Jun '24 3 **Fixed Collimator** Installation: Installation: Installation: Feb '24 May '24 adjustable Collimator April '24 4 5,6 Chopper, Flight tube 2 13 14 Beam Monitor 1 (delivered) 7 8 Filter stage 9 Heavy Shutter (delivered) 10 **Bunker Wall Feedthrough** 11 Beam Monitor 2 12 **Detector Table (delivered)** 13 Beam Stop End Station(Zone 2) Bunker Area (Zone 1) **Bunker Wall** 14 **Experimental Cave** Manufactured: April '24 Infrastructure installation: 15 **Control Hutch** Installation: May '24 CEP: In-bunker: March '24 / Out of bunker: May '24 Manufactured: April '24 CUP: In-bunker/Out of bunker: April '24 Installation: May '24 MCA: In-bunker/Out of bunker: May '24

Slide updated mid Jan.

Upstream opening: H:68 mm x V:28 mm

Downstream opening: H:30 mm x V:25 mm

- Material in workshop
- see ODIN presentation on waiting times...

Adjustable Collimator

- Attenuator selector (3mm, 2mm, 1mm, 0)

- Copper block with inserts Upstream: 38x33mm 9 mm 16 mm
- Pinhole selector (1mm, 3mm, 5mm, 10mm, open)

Filters on-site: Fe, HDPE, Bi, Cd, Sapphire, Si

Picture from above

Picture from above

(32 axis in cave total)

Test beamline (TBL)

Recap: What do we actually want to do?

□ How do we want to do it?

Overview of Layout

□ Spectrum & Shielding & Flux

Detectors

Galaxie Feedback & Discussion

Thermal and cold (0.1 - 25 Å) flux: $3.39e+06 \text{ n/s/cm}^2$ at pinhole 3 mm Thermal and cold (0.1 - 25 Å) flux: $4.16e+07 \text{ n/s/cm}^2$ at pinhole 10 mn Thermal and cold (0.1 - 25 Å) flux: $4.90e+06 \text{ n/s/cm}^2$ at pinhole 3 mm Thermal and cold (0.1 - 25 Å) flux: $5.40e+07 \text{ n/s/cm}^2$ at pinhole 10 mm

Thermal and cold flux: ~1+08 n/s/cm² at 30mmx25mm

Neutron flux obtained from neutron intensity divided by estimated imaging area (3x24 cm²)

Neutronics PHITS model

30x25mm 3 mm 10 mm

1.5 µSv/h countour maps @400 kW to 5WM

Test beamline (TBL)

Recap: What do we actually want to do?

□ How do we want to do it?

Overview of Layout

□ Spectrum & Shielding & Flux

Detectors

□ Feedback & Discussion

Test beamline (TBL): Detectors

Test beamline (TBL)

□ Recap: What do we actually want to do?

□ How do we want to do it?

Overview of Layout

□ Spectrum & Shielding & Flux

Detectors

□ Feedback & Discussion

Current Challenges

• Drowned in documentation requirements that slow down the 'real work'

- Very long lead time for internal workshop (e.g. collimators)
- Computing infrastructure for Instrument Control and DAQ: uncertain timeline (is there enough time to implement and test the 'high standard ESS solutions'?)
- Quality gates potentially delaying an already challenging installation schedule
- General lack of designated working space (work benches, workstation to analyze data; seems hard to imagine we know...)

Questions to STAP

- Are there any 'last minute' design adjustments that TBL should consider?
- Would the STAP advise to take initial neutron data with 'standalone' solutions or using the 'integrated event mode' (EFU) 'as required by ESS'?
- Pulse width (and shape) could be done in the beginning (short to long pulse) by a simple diffraction setup – any advise/concern?
- Would the STAP advise for the TBL to play a role for 'First Science at ESS'?

Questions to STAP

• Should we attempt to re-name (re-brand) the TBL?

Your vote

22 responses

Tora - "Testing of Radiation Analyzer"
Magni - "Multiple Application Giving N...
Tyr (pronounced tier) - "Test Your Req...
Åse - "A Simple Experimental" Beamline
Thor - "Test Hub of Radiation"
Pia - because I fixed the funding:)
HEL
YMIR - no acronym. Ymir is the primor...
Åsna
DJ
Yggdrasil

Thank you!