- CEvNS provides a new avenue to explore fundamental neutrino and nuclear physics.
- ESS is the *ultimate source* for CEvNS, as far as the eye can see.
- As such, it deserves *next-generation* nuclear recoil (NR) detectors sensitive to CEvNS.
- **Precision:** removing statistical limitations is possible at the ESS with *non-intrusive* detectors

(small footprint, no interference with neutron mandate)

- Developing *three* technologies to meet challenge via two ERC actions. Benefit from their synergies.
- Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background measurements in preparation)
- Enthusiastic reception. Work (and flow of funding) has started!

- CEvNS provides a new avenue to explore fundamental neutrino and nuclear physics.
- ESS is the *ultimate source* for CEvNS, as far as the eye can see.
- As such, it deserves *next-generation* nuclear recoil (NR) detectors sensitive to CEvNS.
- *Precision:* removing statistical limitations is possible at the ESS with *non-intrusive* detectors

(small footprint, no interference with neutron mandate)

- Developing *three* technologies to meet challenge via two ERC actions. Benefit from their synergies.
- Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background measurements in preparation)
- Enthusiastic reception. Work (and flow of funding) has started!

177

- CEvNS provides a new avenue to explore fundamental neutrino and nuclear physics.
- ESS is the *ultimate source* for CEvNS, as far as the eye can see.
- As such, it deserves *next-generation* nuclear recoil (NR) detectors sensitive to CEvNS.
- **Precision:** removing statistical limitations is possible at the ESS with *non-intrusive* detectors

(small footprint, no interference with neutron mandate)

- Developing *three* technologies to meet challenge via two ERC actions. Benefit from their synergies.
- Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background measurements in preparation)
- Enthusiastic reception. Work (and flow of funding) has started!

Comparison of past, present and future spallation sources for CEvNS:

Example: sensitivity to non-standard neutrino interactions (smaller is better)

- CEvNS provides a new avenue to explore fundamental neutrino and nuclear physics.
- ESS is the *ultimate source* for CEvNS, as far as the eye can see.
- As such, it deserves *next-generation* nuclear recoil (NR) detectors sensitive to CEvNS.
- Precision: removing statistical limitations is possible at the ESS with non-intrusive detectors (small footprint, no interference with neutron mandate)
- Developing *three* technologies to meet challenge via two ERC actions. Benefit from their synergies.
- Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background measurements in preparation)
- Enthusiastic reception. Work (and flow of funding) has started!

DIPC PIs:

- CEvNS provides a new avenue to explore fundamental neutrino and nuclear physics.
- ESS is the *ultimate source* for CEvNS, as far as the eye can see.
- As such, it deserves *next-generation* nuclear recoil (NR) detectors sensitive to CEvNS.
- **Precision:** removing statistical limitations is possible at the ESS with *non-intrusive* detectors

(small footprint, no interference with neutron mandate)

- Developing *three* technologies to meet challenge via two ERC actions. Benefit from their synergies.
- Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background measurements in preparation)
- Enthusiastic reception. Work (and flow of funding) has started!

- CEvNS provides a new avenue to explore fundamental neutrino and nuclear physics.
- ESS is the *ultimate source* for CEvNS, as far as the eye can see.
- As such, it deserves *next-generation* nuclear recoil (NR) detectors sensitive to CEvNS.
- **Precision:** removing statistical limitations is possible at the ESS with *non-intrusive* detectors

(small footprint, no interference with neutron mandate)

- Developing *three* technologies to meet challenge via two ERC actions. Benefit from their synergies.
- Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background measurements in preparation)
- Enthusiastic reception. Work (and flow of funding) has started!

Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

JHEP 02 (2020) 123

```
D. Baxter,<sup>1</sup> J.I. Collar,<sup>1, *</sup> P. Coloma,<sup>2, †</sup> C.E. Dahl,<sup>3, 4</sup> I. Esteban,<sup>5, ‡</sup> P. Ferrario,<sup>6, 7, §</sup> J.J. Gomez-Cadenas,<sup>6, 7, ¶</sup> M. C. Gonzalez–Garcia,<sup>5, 8, 9, **</sup> A.R.L. Kavner,<sup>1</sup> C.M. Lewis,<sup>1</sup> F. Monrabal,<sup>6, 7, ††</sup> J. Muñoz Vidal,<sup>6</sup> P. Privitera,<sup>1</sup> K. Ramanathan,<sup>1</sup> and J. Renner<sup>10</sup>
```

PHYSICAL REVIEW D 107, 055019 (2023)

Constraining nonstandard interactions with coherent elastic neutrino-nucleus scattering at the European Spallation Source

Sabya Sachi Chatterjee[®],^{1,*} Stéphane Lavignac[®],^{1,†} O. G. Miranda,^{2,‡} and G. Sanchez Garcia[®]^{2,3,§}

Coherent Elastic Neutrino-Nucleus Scattering at the ESS

Expression of Interest

J.I. Collar, ^e J.J. Gomez-Cadenas, ^{d.g.} F. Monrabal, ^{d.g.} P. Privitera, ^e A. Algora, ^f L. Arazi,^m F. Ballester,^k D. Baxter,^e C. Blanco,^e M. Blennow,^q F. Calviño,ⁿ G. Carisson,^f J. Cederkall,^f P. Coloma,^f C.E. Dahl,^{e,f} D. Di Julio,^f W. Domingo-Pardo,^j T.J.C. Ekelöt,^s I. Esteban,^{fb} R. Esteve,^k M. Fallot,^s E. Fernandez-Martinez,^p P. Ferrario,^{d.g.} H.O.U. Fynbo,^v P. Golubev,^f M.C. Gonzalez-Garcia,^{a,b,k} A.M. Heinz,^w J.A. Hernando,^f P. Herrero,^{d.} V. Herrero,^k P. Huber,^v A.R.L. Kavner,^e E.B. Klinkby,^µ C.M. Lewis,^e M. Lindroos,^µ N. Lopez-March,^k E. Lytken,^f P.A.N. Machado,^f M. Maltoni,^p J. Martin-Albo,^j T.M. Miller,^µ F.J. Mora,^k G. Muher,^µ J. Muñoz Vidal,^d E. Nacher,^J T. Nilsson,^w P. Novelia,^J C. Peña-Garay,^f K. Ramanathan,^e J. Renner,^f J. Rodriguez,^k B. Rublo,^j J. Salvado,^b V. Santoro,^µ T. Schwetz,^r J.L. Tain,^J A. Takibayev,^µ A. Tarifeño-Saldivia,ⁿ J.F. Toledo,^k

- ^aC.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook NY 11794-3849, USA
- ^bDepartament de Física Quántica i Astrofísica, Institut de Ciéncies del Cosmos, Universitat de Barcelona, E-08028 Barcelona, Spain
- ^c Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- ^d Donostia International Physics Center (DIPC), 20018 San Sebastián / Donostia, Spain
- ^e Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
- f Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- g Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- h Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain

ⁱ Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, E-15782, Spain

^S SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France

^j Instituto de Física Corpuscular (IFIC), CSIC & Universitat de Valencia, Paterna, E-46980, Spain

^k Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universidad Politécnica de Valencia, Valencia, E-46022, Spain

¹Laboratorio Subterráneo de Canfranc, Canfranc Estación, Huesca, E-22880, Spain

^mNuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel

ⁿ Universitat Politecnica de Catalunya, UPC, Intstitut de Tecniques Energetiques (INTE). Av. Diagonal 647, Barcelona, Spain

^o Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

^P Departamento de Fisica Teorica and Instituto de Fisica Teorica, IFT-UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049, Madrid, Spain

^q Department of Physics, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden

^r Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany

¹ Physics Department, Lund University, PO Box 118, 221 00 Lund, Sweden

¹¹European Spallation Source, PO Box 176, SE-221 00 Lund, Sweden

V Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

W Department of Physics, Chalmers University of Technology, S-41296 Gothenburg, Sweden

x Department of Physics and Astronomy, Uppsala University, SE-752 37 Uppsala, Sweden.

Funded detectors (thus far)

Funded detectors (thus far)

European Funded detectors (thus far) erc Research estrategia Council 100 MEUR/ 10 yr IKERBASQUE program. "Neutrionics" one of four poles. in the second 7.50 [190.5] Cryogenic undoped p-type point contact high pressure gas Csl TPC Ge **ERC-Advanced grant ERC-Starting grant** A COLINA visible above the horizon...

- Natural evolution from CsI[Na] at SNS (same advantages of large σ, similar Cs-I mass, low afterglow)
- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)
- LAAPDs with >80% QE provide a measured < 55 eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.
- Well-studied Quenching Factor down to threshold.

Bigger is not always better:

	52 kg cryogenic CsI @ ESS	750 kg LAr @ SNS
events per year	~18,000	~3,000
energy threshold	~ 1 keVnr	~20 keVnr
energy resolution	~47 e-h(Si)/keVee	~4.2 PE/keVee

Moving from ~100 events/yr... 30 Beam OFF Beam ON counts / 2 PE 15 Res. 25 35 45 15 25 35 45 Number of photoelectrons (PE) 60 counts / 500 ns Beam OFF Beam ON \mathbf{v}_{μ} \mathbf{v}_{μ} \mathbf{v}_{e} 45 prompt n 30 15 Res. 11 Arrival time (μ s) ...to ~18k events/yr 2500CsI (22.5 kg, 3 yrs) $\sqrt{N_{ba}}$ 2000 ν_e Counts/bin Max. $\bar{\nu}_{\mu}$ 1500 Compact 52 kg array of 1000 cryogenic Csl yields up to ~18k CEvNS events/vr 50010 2030 40 E_{rec} (keVnr) JHEP 02 (2020) 123

Physics Reports 1023 (2023) 1-84

80K Csl

- Natural evolution from Csl[Na] at SNS (same advantages of large σ , similar Cs-I mass, low afterglow)
- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)
- LAAPDs with >80% QE provide a measured < 55 eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.
- Well-studied Quenching Factor down to threshold.

- Natural evolution from Csl[Na] at SNS (same advantages of large σ , similar Cs-I mass, low afterglow)
- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)
- LAAPDs with >80% QE provide a measured < 55 eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.
- Well-studied Quenching Factor down to threshold.

	Amcrys Csl[Na] @ SNS	🖌 SICCAS Csl @ ESS
Th-232	<0.5 mBq/kg	0.03 mBq/kg
U-238	2.4 mBq/kg	0.09 mBq/kg
K-40	16.7 mBq/kg	< 4.1 mBq/kg
Cs-137	27.9 mBq/kg	1.3 mBq/kg
Cs-134	25.9 mBq/kg	33 mBq/kg
Rb-85	101 ppb	15.5 ppb
Rb-87	38 ppb	1.8 ppb

SICCAS low-background Csl selected:

and Methods in Physics Research A 571 (2007) 644-65

1500

2000

- Natural evolution from CsI[Na] at SNS (same advantages of large σ, similar Cs-I mass, low afterglow)
- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)
- LAAPDs with >80% QE provide a measured < 55 eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.
- Well-studied Quenching Factor down to threshold.

20x20 cm low-field modules ~80 Hz dark rate @ 87 K (single photon operation) 16 channel output

- Natural evolution from CsI[Na] at SNS (same advantages of large σ, similar Cs-I mass, low afterglow)
- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)
- LAAPDs with >80% QE provide a measured < 55 eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.
- Well-studied Quenching Factor down to threshold.

Sub-keV nuclear recoils detected in Csl

Collaboration with industry (and 1st spin-offs):

RMD 46 cm² LAAPD, ~4 photon threshold at 80K

DOI: 10.1109/NSSMIC.2004.1462432

Figure 10. Detection of an optical pulse (<8 photoelectrons per pulse) and an electronic test pulse with the 45 cm² APD at 77 °K. The electronic noise of the large APD is ~0.8 electrons (rms).

Nuclear Instruments and Methods in Physics Research A 610 (2009) 207-209

Fig. 3. Quantum efficiency vs. wavelength for a 4 and 30Ω cm APD.

Collaboration with industry (and 1st spin-offs):

High-pressure noble gases (GavESS)

- Profit from NEXT 0vββ technology (low background, high pressure)
- Room temperature operation
- 1-2 e^- thresholds (~50 eV_{ee}) via EL
- ER/NR discrimination demonstrated
- Excellent energy resolution
- variety of nuclei -> Ar, Kr, Xe
- Complementarity Csl-Xe

GavESS's gaseous prototype (GaP)

- opportunity to evaluate the technique in different conditions
 - multiple targets (Ar, Kr, Xe)
 - pressure up to 50 bar
- characterization of the low-energy response to nuclear recoils
 - quenching factor measurements
 - detection threshold

Currently characterizing ER signals with gaseous Ar at ~9.5 bar

The Gaseous Prototype (GaP) Assembly

GaP inside

Photochemical etched mesh

TPC

GaP timeframe

Start looking at NR signals: - ²⁵²Cf source (exempt <1000 n/s).

Move to Xenon and repeat

HD-DEMO

- Dual purpose detector: Scaling NEXT and ESS large demonstrator.
- Currently in construction, to operate in DIPC in 2025
- Barrel of WLS fibers will cover the surface of the cylinder in order to detect Xe scintillation light (175 nm).
- Different options being explored:
 - Green-to-blue fibers coated with TPB.
 - UV-to-blue fibers coated with p-terphenyl.
 - Readout with cooled SiPMs (Hamamatsu, FBK) Fiber R&D at DIPC

- Illuminate different fibers with LED and read out with different photosensors (PMT, SiPMs)
- Measure light collection efficiency of the system

P-type Point Contact (PPC) germanium detectors

Entirely mature: if ESS was producing v's today we would be measuring them already

Inner plastic scintillator veto is highly effective against beam-related neutron backgrounds

P-type Point Contact (PPC) germanium detectors

neutron backgrounds

60x60 cm footprint **Ideal for ESS corridor location** - steady-state (subtractable) 10° ---- NINs - NINs + inner veto ---- prompt n prompt n + inner veto 7 kg-yr $\frac{\text{counts}}{10} / \frac{\text{keV}_{ee}}{10}$ CEvNS 10^{1} QF = 20 %d = 20 m 10^{0} 10100 ionization energy (keV_o)

P-type Point Contact (PPC) germanium detectors

E = 216 eV

120

160

Dresden-II

(better than Morris, IL)

PPC deployment

time (µs)

80

r.t. = 409 ns

82 84 86 88 90 92

(more QF measurements) ~ 1E5 NR below 700 eVnr, testing FIFRADINA libraries

Hunting for non-intrusive detector locations

tillity room

- steady-state backgrounds are subtractable (C-AC)
- prompt neutron leakage from target is main background
- MCNP simulations completed (GEANT in progress)
- neutron camera for on-site measurements (remedial shielding in utility room)

ESS neutron induced background

Déjà vu all over again: *in situ* neutron bckg measurements

Neutron scatter camera ready for first POT

Res ipsa loquitur:

- We are ready to land and start running.
- Our requirements from the ESS are minimal (by design).
- The beginning of a long program, with many others to benefit.