

Using Docker containers for photon experiment simulations in HPC environments

<u>Sergey Yakubov</u>, Carsten Fortmann-Grote, Yves Kemp, Frank Schlünzen

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Outline

- Introduction
- DESY HPC cluster (Maxwell)
- Docker in HPC cluster environments
- SIMEX HPC simulations with Docker
- Conclusions

Virtual machine

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

Why container?

- Lightweight
- Low overhead
- Micro-services
- Service orchestration
- Software development/testing
- Software deployment

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Why container?

- Lightweight
- Low overhead
- Micro-services
- Service orchestration
- Software development/testing
- Software deployment

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Why Docker?

- Open-source
- 1,500 contributors
- Commercial support
- Docker hub to store images
- Can be used everywhere (well, almost)

Alternatives – LXC, rkt?

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Maxwell HPC Cluster

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

Docker for Maxwell

- For each job we create an HPC cluster of Docker containers
 - Secure (no root access for user)
 - High-speed network
 - Parallel file system
 - Deployed using SLURM
 - User friendly

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Docker for Maxwell - Security

- Until February 2016 there was a serious lack of security
 - User ID inside a Docker container matched user ID on the host system
 - root access inside Docker = root access to host
 - → cannot use 3rd-party containers
 - cannot allow user to execute Docker commands
- Since version 1.10 kernel user namespace can be used
 - User ID and Group ID are isolated inside a container
 - Experimental kernel parameter in RedHat and Co. (available since version 7.2)

--enable-user-namespace=1

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

Docker for Maxwell - Network

• For each job we create an HPC cluster of Docker containers

\$ docker run -d <.....> centos_mpi_benchmarks

Using host network

--net=host

Insecure (does not support user namespaces)!

- Using default bridge network
 - Add infiniband devices

--device=/dev/infiniband/uverbs0 --device=/dev/infiniband/rdma_cm

Pass IPoIB interface to a container

pipework ib0 <docker name> <ip address>/24

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Docker for Maxwell – Parallel Filesystem

• For each job we create an HPC cluster of Docker containers

\$ docker run -d <.....> centos_mpi_benchmarks

Sharing a folder in a parallel filesystem

-v /home/jdoe/test:/shared

- User namespaces should be respected by the filesystem
 - nfs
 - > gpfs
 - beegfs

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Docker for Maxwell – File Permissions

- Since we use user namespace
 - Shared folder should have read (write) permissions for everyone
 - → alternative stage data
 - After job is finished ownership of the files created in the shared folder must be changed
- Alternatively trusted images can be started without user namespaces
 - What is trusted image?
 - Docker authorization plugin is used for extra security

Docker for Maxwell – Image Repositories

- DESY's repositories
 - Read-only repository
 - No user namespaces
 - > User cannot upload images
 - docker exec –u root not allowed
 - Open (to DESY users) repository
 - > User namespaces are active
 - > User can upload images
 - docker exec –u root allowed
- Dockerhub
- Third-party repositories (certified)

Docker for Maxwell - Workflow

Docker in DESY HPC environment

User submits a job to a resource management (SLURM)

#SBATCH –comment="use_docker;max-adm01:5001/centos_mpi_benchmarks; /home/yakubov/container_shared:/shared"

- SLURM puts the job in a common queue
- As soon as resources are available, SLURM starts a container on each of the allocated nodes (using prolog script)

docker run -d \ -v \$DOCKER_HOST_PATH1:\$DOCKER_CONTAINER_PATH1 ... \ --name=docker_\$SLURM_JOB_ID \ \$DOCKER_IMAGE

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

Docker for Maxwell - Workflow

Docker in DESY HPC environment

And creates a virtual network (SLURM daemon runs as root)

/root/bin/pipework ib0 docker_\${SLURM_JOB_ID} \${mask}.\${nnode}/24

User sets-up job steps to be executed (in a script or interactively)

docker_run simex.py docker_mpirun -n 32 simex.py

SLURM removes all containers using epilog script after the job is finished

Examples - MPI Bandwidth and Latency Tests

- Two Maxwell compute nodes, Mellanox Infiniband 56 Gbs (4X FDR)
- Host system vs Docker container
 - ib utilities

	Host system	Docker
ib_send_bw	44 Gbs	46.9 Gbs
ib_send_lat	1.1 µs	1.07 µs

 mpi_benchmarks (source: Lawrence Livermore National Laboratory)

	Host system	Docker
mpi_bandwidth	45.7 Gbs	44.9 Gbs
mpi_latency	1.99 µs	1.99 µs

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Examples – HPCG/HPL Benchmarks

- High-Performance Linpack Benchmark
 <u>http://www.netlib.org/benchmark/hpl</u>
- High Performance Conjugate Gradients
 <u>http://hpcg-benchmark.org</u>
- Both used by Top500 (officially/unofficially yet)

HPCG rank	Cores	Top rank	HPL (PFlops)	HPCG (PFlops)
NSCC Tianhe-2	3 120 000	2	33.86	0.58
RIKEN K computer	705 024	5	10.51	0.46
DOE Titan	560 640	3	17.59	0.32
HLRS Cray XC40	185 088	9	5.64	0.14

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

Examples – HPCG/HPL Benchmarks

Benchmark results on Maxwell cluster

	Cores	HPL (TFLops)	HPCG (TFLops)
Maxwell	64 (2 nodes)	1.56	0.033
Maxwell+Docker	64 (2 nodes)	1.56	0.033
Maxwell	368 (15 nodes)	9.0	0.192
Maxwell+Docker	368 (15 nodes)	9.0	0.192

EUCALL

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

SIMEX on Maxwell - Deployment

SIMEX (see presentation from Carsten Fortmann-Grote)

- Deployment is non-trivial
 - Each calculator has its own dependencies and install script
 - Need to install in various environments
 - Users can have admin/non-admin rights
 - Experienced developers/unexperienced users
- Possible solutions
 - Use CMake build system
 - Use binary packages (deb, rpm, ...)
 - Use Docker containers

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

SIMEX on Maxwell - Deployment

Deployment using Docker containers

- SIMEX image is on the Docker hub
- Everything is installed inside the image
- To start working with it just type

docker run -it simex bash

• Or submit a job with python script to SLURM

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

SIMEX on Maxwell – Performance Results

X-ray wavefront propagation calculator

- Propagation of light through optical elements
- Utilizes SRW (Synchrotron Radiation Workshop) library
- C++ core + python wrappers
- Hybrid OpenMP/MPI parallelization

Threads x MPI processes	Number of nodes	Total time	Time/file
1x1	1	11h	1031 s
40x1	1	65 min	98 s
4x10	4	7.5 min	45 s
8x5	8	4.2 min	51 s

40 source files

Single source file

N cores

This project has received funding from the *European* Union's Horizon 2020 research and innovation programme under grant agreement No 654220

SIMEX on Maxwell – Performance Results

X-ray wavefront propagation calculator

- Propagation of light through optical elements
- Utilizes SRW (Synchrotron Radiation Workshop) library
- C++ core + python wrappers
- Hybrid OpenMP/MPI parallelization

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220

SIMEX on Maxwell – Performance Results

Photon diffraction calculator

- Absorption, emission, and scattering of radiation
- Utilizes SingFEL photon diffractor library
- C++ core + python wrappers
- MPI parallelization

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 654220

Conclusions

- Running Docker containers on an HPC cluster is possible and
 - does not break system security
 - does not introduce overhead
 - uses general resource scheduling procedures
- Simplifies software development and deployment
 - Can be developed and compiled off-site and deployed instantly on a cluster
- Photon experiment simulations can be efficiently performed on an HPC cluster using "dockerized" SIMEX platform.

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654220