

Accelerator Components and Technologies

Christine Darve

Nordic Particle Accelerator School, NPAS2015 http://www.eit.lth.se/index.php?ciuid=922&L=1

Lund University August 19, 2015

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (accelerator complex and technologies)

Acknowledgements & references

Acknowledgement to D. McGinnis, M. Vretenar and P. Lebrun

- US-Particle Accelerator School, <u>http://uspas.fnal.gov/materials/materials-table.shtml</u>
- CERN Accelerator School http://cas.web.cern.ch/cas

A few books

- RF Linear Accelerators, T.P. Wangler, Wiley, 2008
- RF Superconductivity for Accelerator, H. Padamsee, J. Knobloch, T. Hays, Wiley, 2011
- An introduction to particle accelerators, E.J.N. Wilson, Oxford Univ. Press, 2001
- An introduction to the physics of high-energy accelerators, D.A. Edwards & M.J. Syphers, Wiley, 1993
- The principles of circular accelerators and storage rings, P.J. Bryant & K. Johnsen, Cambridge Univ. Press, 1993

Type of Particle Accelerators

High power H/D beams around the world

Type of Particle Accelerators Used for?

Today: > 35,000 accelerators are in operation around the world

.. and "has been"

Discovery science: e.g. High Energy Physics

Materials research/manufacturing: e.g. light sources, spallation source,

Accelerator Driven Systems (ADS)

X-ray scanning

National security

Medical Applications:

e.g. Neutron and Proton Therapies MRI and NMR

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (accelerator complex and technologies)

ElectroMagnetism - Lorentz

Electric Fields to accelerate charged particles

→ RF accelerator components

Magnetic Fields to bend, steer, (de)focus

→ Magnet components

Lorentz force

$$\vec{F} = \frac{d\vec{p}}{dt} = e(\vec{E} + \vec{v} \times \vec{B})$$

$$\beta = \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}}$$

	Electron	Proton	
Rest mass [Kg]	9.11E-31	1.67E-27	
Rest mass [MeV]	0.511	938	
V~0.95 c [MeV]	1.1	2000	
ratio	1	1836	

ElectroMagnetism - Maxwell

Cockroft & Walton Van de Graaf

collecting metal sphere +

time-varying (AC)

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

DC to AC Accelerators

→ Linear Accelerators (LINAC): Large space charge

DC and AC components: Cockroft-Walton and Van de Graff, RFQ, DTL, RF cavities

- Each Linear Accelerator starts by a source followed by DC accelerator components
- Need to switch to AC due to the accumulation of high voltage causing sparking
- So we need to use Radio-Frequency sources
- As an effect, the beam is bunched

← Principle of the Drift Tube Linac:

ESS LINAC is 600m long (350m of acceleration) and reaches an energy of 2 GeV Assuming we need a 7 TeV machine (LHC), the Linac should be 1,225 km long!

Linac over and over?

→ Synchrotron Accelerators:

Space charge effect becomes small

* Cover range where particle velocity is nearly cst. e.g. LHC, Tevatron

RF Quadrupole

At low energy proton, the RFQ permits:

- 1. Bunching of the beam
- 2. Focusing quadrupole
- 3. Accelerating

Drift Tube Linac

Every cell is different, focusing quadrupoles in each drift tube

RF cavity

EM fields enclosed in a cavity with resonant frequency matching that of RF generator

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (accelerator complex and technologies)

RF Cavity

Example: a linac superconducting 4-cell accelerating structure

Synchronism condition bw. particle and wave t (travel between centers of cells) = T/2

$$\frac{d}{\beta c} = \frac{1}{2f} \implies d = \frac{\beta c}{2f} = \frac{\beta \lambda}{2}$$

d=distance between centres of consecutive cells

RF Cavity

DESIGNING SUPERCONDUCTING CAVITIES FOR ACCELERATORS

Hasan Padamsee Cornell University, Ithaca, NY 14853

Fig. 7 Pill-box resonator

Only simple structures can be calculated analytically, such as a cylinder with no beam holes (Figure 7), referred to as the "pill-box cavity." For our purposes, the analytic calculations of a simple cylindrical cavity are convenient to define the important performance parameters of superconducting cavities. For a cylinder of length d and radius R using cylindrical co-ordinates (ρ, ϕ, z) , the electric (E_z) and magnetic (H_d) fields for the TM₀₁₀ mode are given by:

$$E_z = E_0 J_0 \left(\frac{2.405\rho}{R} \right) e^{-i\omega t}, \quad H_\phi = -i \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0 J_1 \left(\frac{2.405\rho}{R} \right) e^{-i\omega t}$$
 (1)

where all other field components are zero. J₀ and J₁ are Bessel functions. The angular resonant frequency is given by:

RF Cavity Cavity Field Pattern

For the fundamental mode at one instant in time:

RF Cavity Cavities Modes

Fundamental and High Order Modes (HOM)

RF Cavity RLC Model for Cavity Mode

Around each mode frequency, we can describe the cavity as a simple RLC circuit.

 $\ensuremath{\text{R}_{\text{eq}}}$ is inversely proportional to the energy lost

L_{eq} is proportional to the magnetic stored energy

C_{eq} is proportional to the electric stored energy

Position:

$$\frac{1}{\omega_{o}} = \sqrt{L_{eq}C_{eq}}$$

Amplitude:

$$Z_{eq} = R_{eq} = Q \sqrt{\frac{L_{eq}}{C_{eq}}}$$

Function of geometry

Frequen

Width

$$Q = \omega_0 R_{eq} C_{eq}$$

Function of geometry and cavity material

RF Cavity

RLC Parameters for a Transmission Line Cavity

For the <u>fundamental mode</u> of the transmission line cavity:

$$P_{loss} = \frac{1}{2} \frac{V_{gap}^{2}}{R_{eq}}$$

$$R_{eq} = 4 \frac{Z_{o}^{2}}{r_{1}L}$$

$$W_{E} = \frac{1}{4}C_{eq}V_{gap}^{2}$$

$$C_{eq} = \frac{\pi}{8}\frac{1}{\omega_{o}Z_{o}}$$

$$W_{H} = \frac{1}{2}$$

$$L_{eq} = \frac{\pi}{8}\frac{1}{\omega_{o}Z_{o}}$$

$$W_{H} = \frac{1}{4} \frac{V_{gap}^{2}}{\omega_{o}^{2} L_{eq}}$$

$$L_{eq} = \frac{8}{\pi} \frac{Z_{o}}{\omega_{o}}$$

The transfer impedance of the cavity is:

$$Z_{c} = \frac{v_{gap}}{I_{gen}}$$

$$\frac{1}{Z_{c}} = \frac{1}{R_{eq}} + \frac{1}{j\omega L_{eq}} + j\omega C_{eq}$$

RF Accelerator

- The cavity is attached to the power amplifier by a transmission line.
- The internal impedance of the power amplifier is usually matched to the transmission line impedance connecting the power amplifier to the cavity.
 - As in the case of a Klystron protected by an isolator
 - As in the case of an infinitesimally short transmission line

SRF Cavities Performances

- Accelerating gradient
- Peak Surface fields
- Power Dissipation
- Cavity Quality
- Shunt Impedance

Few limitations of performance:

- Thermal Breakdown, alias quench
- Field Emission: Electron induced by an electrostatic field
- Multipacting: electron avalanche

Limit power loss in the cavity wall:

- By using low-resistant material or superconductors
- By rounding the shape to optimize the field distribution
- Limit shape edge to prevent field emission
- Good vacuum to limit breakdown

Cavity gradients

- Cavity gradient is directly related to cost -> tendency to push the gradients
- SNS experiences a huge gradient variability -> needs for margins & operational flexibility !!
 - ✓ Almost every SNS run, a few cavities have problems, resulting in lower E_{acc} or turn-off -> linac retuning
 - ✓ Achievable gradients are mainly limited by heating by electron activity at high duty factor (especially by induced collective limits)

Ex. CM13 individual limits; 19.5, 15, 17, 14.5 MV/m
Ex. CM13 collective limits; 14.5, 15, 15, 10.5 MV/m

Cavity Q

- If the cavity walls are lossless, then the boundary conditions for a given mode can only be satisfied at a single frequency.
- If the cavity walls have some loss, then the boundary conditions can be satisfied over a range of frequencies.
- The cavity Q factor is a convenient way the power lost in a cavity.
- The Q factor is defined as:

$$Q = \frac{W_{stored}}{W_{lost/cycle}}$$
$$= \omega_o \frac{W_E + W_H}{P_I}$$

Cavities and Cryomodules

RF cavities housed in cryomodules, which keep the RF cavities working in a superconducting state, without losing energy to electrical resistance

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (accelerator complex and technologies)

Superconductivity and Superfluidity

- Superconductivity became a key-technology for particle accelerator. Superconductivity allows:
 - To operate high-field, high current density magnet operating above the saturation of iron,
 - To build high-field, low-loss RF Cavities (low wall resistance)
 - Reducing overall electrical consumption of the machines

- The superconducting state only occurs in a limited domain of (low) temperature, magnetic field and current density, limited by the «critical surface» of the material
- Superconducting magnets produce high field with high current density
- The working point must remain below the «critical surface» of the superconductor
- Operating at lower temperature increases the working range in the magnet design plane (J_c,B)

EUROPEAN SPALLATION SOURCE

Superconductivity and Superfluidity

- In a superconducting magnet, the field is given by the current distribution in the windings (Biot & Savart's law).
- When present, the iron only acts as a flux return yoke

Superfluidity of Helium

Helium (25 %) is the most common element in Universe after Hydrogen (73 %)

Two isotopes: ³He (fermion) & ⁴He (boson)

100000000 Triple point 1.760 K 10000000 Solid 29.7 bar Liquid 1000000 He I Pressure (Pa) Lambda line Critical point 5.195 K 100000 Liquid 2.274 bar He II Tevatron operation 10000 Lambda point Vapor 2.177 K 1000 0.050 bar

Temperature (K)

100

Helium II - Quantum fluid

Exceptional heat transfer

- Specific heat transition at 2.17 K T_{λ}
- Enormous heat conductivity at moderate flux (3,000 x OFHC copper at 1.9K)

-> Thermo-mechanical - fountain effect

Superfluidity of Helium

EUROPEAN SPALLATION SOURCE

The two-fluid model for helium II

Normal-fluid fraction:

- excited states atom (phonons & rotons)
- → like a conventional viscous fluid
- finite density, r_n
- finite viscosity, η

- entropy, s

Macroscopic quantum physic system simplification
The two-fluid model is only a phenomenological model!

Superfluid fraction:

- atoms that have undergone BEC
- → like an ideal inviscid liquid resulting in the absence of classical turbulence.
- finite density, r_s
- NO viscosity
- carry NO entropy
- → irrotational behavior for an inviscid fluid

$$\nabla \times \mathbf{v}_{s} = \mathbf{0}$$

→ but vortices can be generated in the superfluid component

Quantized vortices

$$\Gamma_s = \oint v_s \cdot dr = n\kappa = n\frac{h}{m}$$

Counter-flow turbulence

Thermal conductivity of helium II

Internal convection of the super-fluid and normal-fluid components No

$$\nabla T = \frac{\beta \eta_n}{d^2 \rho s} |v_n| + \frac{A_{GM} \rho_n}{s} |v_s - v_n|^3$$

q(W/cm2)

and Counter-flow mechanics cold end

No bulk flow Heat flux

No bulk flow Heater

- normal-fluid component
- super-fluid component

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (accelerator complex and technologies)

The European Spallation Source

The European Spallation Source

Philosophie de "Pré-vert": Greenfield

Japan 2008: JPARC (<1MW)

USA 2006: SNS (<1.4 MW) 1 GeV, 26 mA in linac, 627 ns long pulse, 60 Hz

- Will bring new insights to the grand challenges of science and innovation
- Collaborative project: more than 17 countries
- 2014: Start of construction phase of the world's most powerful linear proton accelerator
- 2019: Provide the world's most advanced tools for studying materials with neutrons
 (~ 450 employees; > 2500 users / year)

Effective thermal neutron flux n/cm²-s

High time average and peak flux

Fission and Spallation

Gammas

Spallation is a non-elastic nuclear interaction induced by a high-energy particle producing numerous secondary particles

Process	Reaction	Neutron yield	Energy deposition	
Fission	²³⁵ U(n,f)	3 n/fission	190 MeV/n	Duetene
Spallation	p 1 GeV $ ightarrow$ Hg	30 n/proton	55 MeV/n	Protons
			Nucleus	Pions
		Primary pa	GeV Serticle	Neutrons

Target Station includes systems that address nuclear hazards

Spain was one of the first countries to send a Letter of Intent committing to the construction of the European Spallation Source, and a close collaboration has followed. In November 2014, ESS-Bilbao was chosen as the in-kind partner for the ESS target system

- Remote Handling Systems including hot cells and associated equipment for maintenance and storage of irradiated components
- Target Safety System including credited controls to protect public and environment from radioactive hazard
- Fluid Systems including He and H₂O coolant loops, ventilation, filtering, etc.

Target station converts protons to "slow" neutrons

- Diameter ~ 11 m; Height ~ 8 m
- Mass ~ 7000 tonnes (mainly steel)

Target Monolith

The tungsten wheel concept:

The target wheel will measure 2.5 meters in diameter, is estimated to weight 4 tonnes, and is divided into 36 radial sectors

Functions:

- Convert protons to usable neutrons
- Heat removal
- Confinement and shielding

Unique features:

- Rotating target
- He-cooled W target
- High brightness moderators

ESS long pulse potential

Accelerator Technical performances

- The scope contingency for the accelerator project consists of the RF sources and installation costs (after 2019) for the high beta-part of the linac
- The **fully equipped cryomodule for the high-beta** linac are IK contributions and are **not part of the scope contingency**. The infrastructures needed for the construction of these are only available during ESS construction.

Linac redesign to meet ESS cost objective

€56 m **>**

Spokes

Target

Beam power (MW)	5
Beam current (mA)	62.5
Linac energy (GeV)	2
Beam pulse length (ms)	2.86
Repetition rate (Hz)	14

	Num. of CMs	Num. of cavities
Spoke	13	26
Medium β (6-cell)	9	36
High β (5-cell)	21	84

← 77 m →

Medium B

704.42 MHz

← 179 m

<u>20</u>00

High B

HEBT &

Contingency

Style	Spoke	Medium-β	High-β
Freq. (MHz)	352.21	704.42	704.42
Cavity #	26	36	84
Velocity range	0.42 to 0.58	0.58 to 0.78	0.78 to 0.95
Nom. Acc. Voltage (MV)	5.74	14.3	18.2
Loaded quality factor	2.85 × 10 ⁵	8 × 10 ⁵	7.6 × 10 ⁵

[SRF2013 – "The ESS Superconducting Linear Accelerator", C. Darve, M. Eshraqi, M. Lindroos, D. McGinnis, S. Molloy, P. Bosland and S. Bousson]

Front End Section

Ion Source

- Microwave Discharge Ion Source
- Proton peak current ~75 mA
- Total drain current ~100 mA
- Output Energy 75 keV
- Provided by INFN-LNS, Catania
- Experience from TRIPS ion sources

Extraction system of the ESS ion source (Courtesy L. Celona)

Prototype proton source operational, and under further development, in Catania.
Output energy 75 keV.

LEBT (Low Energy Beam Transport)

- Dual solenoid layout
- Functions:
 - Transport and match input the RFQ
 - Clean the beam pulse from the rise/fall time of the source with a slow chopper
 - · Provide different level of beam current with an iris
- Provided by INFN-LNS, Catania
- Design close to the IFMIF LEBT

IFMIF source and LEBT at CEA-Saclay

Front End Section

RFQ

- 352 MHz 4-vanes RFQ
- 5 segments of ~90 cm
- Functions:
 - Accelerates
 - Bunches the pulse in a train of bunches
 - Focuses in the 3 planes
 - Provide different level of beam current with an iris
- Foreseen transmission > 90 % for 70 mA input beam
- Provided by CEA-Saclay

MEBT

- Fully instrumented MEBT ~ 4.5 m
- Functions:
 - Transport and match into the DTL
 - Characterize the beam
 - Fast chopping of the beam with rise/fall time ~ 10 ns
- Provided by ESS-Bilbao

MEBT layout (Courtesy B. Cheymol)

Design work at ESS Bilbao for MEBT with instrumentation, chopping and collimation.

Front End Section

- DTL (Drift Tube Linac)
 - 352 MHz
 - 5 tanks
 - Length ~ 40 m
 - Output energy: ~90 MeV
 - Provided by INFN-LNL, Legnaro

DTL 3D view (Courtesy P. Mereu)

DTL design work at ESS and in Legnaro, 3.6 -> 90 MeV.

Picture from CERN Linac4 DTL.

- Six klystrons
 - 352 MHz
 - with a maximum saturated power of 2.8 MW
 - and a duty factor of 4% are required for the Front End

Super-Conducting Linac

Spoke cavity string and cryomodule package

Diameter 1350 mm

Cavity Cryomodule - Generic

Similar to SNS in size and purpose : re-use the same concepts

Similar medium and high-beta cavity cryomodules

- Common design: Small length difference between medium and high-beta cavities
- Distance between power couplers
- Vacuum vessels, thermal shield, supports, alignment system.

Only minor differences:

- Length of the inter-cavity bellows, details in cryo piping, beam pipe bellows
- Tuner piezo frames
- Penetration of the antenna for Q_{ext} adjustment

Elliptical Cryomodule Components

Elliptical Cryomodule Components

Cryomodule Interfaces

Cryogenic distribution

Most AD internal Work Packages (beam optics, RF, cryo, vacuum, test stands, electrical, cooling, installation)

Beam

- External WPs cryomodule, cavity and designers and potential In-Kind collaborators
- Control command (Control Box, PLC, LLRF, MPS, EPICS)

Data-logging ICS teams

ESS ES&H

Conventional Facility

ESS system engineer, QA

Survey experts

Transport

Previous Linac version for comparison ->

Control system Diagnostic Beam Vacuum Radio-Frequency

Cold Tuning System

Spoke CTS

Stepper motor and planetary gearbox (1/100e) at cold and in vacuum

2 piezo stacks

&

Elliptical CTS

Type V; 5-cell prototype +/- 3 mm range on cavity

Slow tuner

Main purpose : Compensation of large frequency shifts with a low speed

Actuator used : Stepper motor

Fast tuner

Main purpose: Compensation of small frequency shifts with a high speed

Actuator used: Piezoelectric actuators

Lorentz De-tuning

- Because of the enormous gradients in superconducting cavities,
 - the radiation pressure deforms the cavities
- We expect over 400 Hz of detuning in the ESS cavities.
 - Unloaded cavity bandwidth = 0.07 Hz
 - Loaded cavity bandwidth = 1 kHz
- The mechanical time constant of the cavities is about 1 ms compared to the pulse length of 3 ms
 - Static pre-detuning as done in SNS will not be sufficient
 - Dynamic de-tuning compensation using piezoelectric tuners is a must!
 - Or else pay for the extra RF power required

Fundamental Power Coupler

ESS Requirements and RF Parameters

Spoke cavities

Elliptical cavities

Frequency (MHz)	352,2		Medium	High
Optimum beta	0,50	Geometrical beta	0.67	0.86
Operating temperature (K)	2	Frequency (MHz)	704.42	
Nominal Accelerating gradient (MV/m)	9	Number of cells	6	5
		Operating temperature (K)		2
Lacc (β opt.x nb gaps x λ /2) (m)	0,639	Epk max (MV/m)	45	45
Bpk (mT)	79 (max)	Nominal Accelerating gradient (MV/m)	16.7	19.9
Epk (MV/m)	39 (max)	Q ₀ at nominal gradient	>	5e9
Bpk/Eacc (mT/MV/m)	<8,75	Q _{ext}	7.5 10 ⁵	7.6 10 ⁵
Epk/Eacc	<4,38	Iris diameter (mm)	94	120
Beam tube diameter (mm)	50	Cell to cell coupling k (%)	1.22	1.8
RF peak power (kW) G (Ω)	335 130	p,5p/6 (or 4p/5) mode sep. (MHz)	0.54	1.2
Max R/Q (W)	427	Epk/Eacc	2.36	2.2
Qext	2,85 10 ⁵	Bpk/Eacc (mT/(MV/m))	4.79	4.3
Q0 at nominal gardient	1,5 10 ⁹	Maximum. r/Q (W)	394	477
		Optimum β	0.705	0.92
		$G\left(\Omega ight)$	196.63	241
		RF peak power (kW)	1	100

SRF Cavities Development

Spoke cavity

Elliptical cavities

Medium beta:

- 6 cells beta=0.67
- Length 1259,40mm

High beta:

- 5 cells beta=0.86
- Length 1316,91mm

Medium-β Elliptical Cavities

Nominal wall thickness [mm]	3.6
Cavity stiffness Kcav [kN/mm]	2.59
Tuning sensitivity Df/Dz [kHz/mm]	197
K_L with fixed ends $[Hz/(MV/m)^2]$	-0.36
K_L with free ends $[Hz/(MV/m)^2]$	-8.9
Pressure sensitivity K _P [Hz/mbar] (fixed ends)	4.85

RF/mechanical design

Lorentz detuning

$$K_L = \Delta f / E_{acc}^2$$

$$K_{L} = K_{L\infty} + \frac{\Delta f}{\Delta z} \frac{\overrightarrow{F_{\infty}} \cdot \overrightarrow{u_{z}} / E_{acc}^{2}}{K_{ext} + K_{cav}}$$

The 3 spoke cavities prototypes:

named: Romea, Giulietta and Germaine

Germaine

View of the cavity inside: the spoke bars

Spoke cavity Performances (Jan-June 2015)

Spoke cavity exceeding ESS requirements in vertical test on both Eacc and Qo

- Eacc_max=15.3 MV/m achieved with "Romea"
- Several MP barriers but easily processed.
- Qo > $1.6 \ 10^{10}$
- Strong FE at max gradient
- Limitation is the cooling capacity (unstable conditions, cavity in vertical position)

Integration and Verification Two high beta prototype cavities

Protypes with HOM ports for RF measurement

Both prototype cavities met the ESS requirements after the first test: very encouraging results!

Slight degradation of performances after thermal treatment for hydrogen removing (pollution)

Elliptical Cavity Preparation

High beta cavity fabrication (Zanon and RI)

Study of the tooling in progress @ CEA

Example of the tooling for the assembling of the coupler on the cavity in clean room

High β Elliptical Cavity Activities in Clean Room

Magnetic shield

Elliptical Assembly Procedure

Design concept of the tooling: most of parts will be used for both types of elliptical cryomodules

Infrastructure in Saclay

The clean room inauguration

→ May 13th 2014

Possible IKC for the assembly by industry at Saclay (XFEL cryomodules assembly)

- Uses the current infrastructure at Saclay
- Benefits from the experience of the XFEL cryomodule assembly (ALSYOM)

Spoke assembling in clean room/IPNO

Process and Instrumentation

Control integration

Spoke linac (352 MHz) RF System Layout

26 Double Spoke cavities
Power range 280-330 kW
Combination of two tetrodes

Other options: Solid State Amplifiers

Large power supply (330 kVA) to supply 8 stations (16 tetrodes)

Elliptical (704 MHz) RF System Layout

- One cavity per klystron
- 4 klystrons per modulator

Elliptical (704 MHz) RF System Layout

4.5 Cells of 8 klystrons for Medium Beta 10,5 Cells of 8 klystrons (IOTs) for High Beta

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (accelerator complex and technologies)

CERN and the Large Hadron Collider

Key technologies of the LHC accelerator ess

- Superconducting magnets
 - 1,250 ton of NbTi superconducting materials
 - 7,600 km of superconducting "Rutherford" cables
 - 9,600 magnets (incl.1,232 dipoles, 392 quadruples)
- Superfluid helium cryogenics (< 2 K) and vacuum techniques
 - Pressurized and saturated superfluid helium, in two-phase flow
 - Cryostats and thermal insulation
 - Efficient and large capacity helium refrigerators
 - Cryogen storage and mgt (120 ton of He LHC DIPOLE: STANDARD CROSS-SECTION)

LHC Magnets

EUROPEAN SPALLATION SOURCE

LHC Magnets

7,600 km of cable made of 270,000 km of strand (6 earth circumferences)

→ filaments : 6 times back and forth to the

Sun + 150 trips to the moon

The low-beta magnets at the LHC

Inner Triplet for final beam focusing/defocusing

→ Critical system for LHC performance American contribution to the LHC machine

The low-beta magnets at the LHC

Type of instrumentation: cryo-magnets

Interface with QRL

Low-beta system xx8xx

Electrical feed-boxes

*HTS leads
*Vapor cooled leads

General architecture of the cryogenic system

18 kW @ 4.5 K helium refrigerators

33 kW @ 50 K to 75 K

23 kW @ 4.6 K to 20 K

41 g/s liquefaction

Warm compressors

2.4 kW @ 1.9 K refrigeration units

Cold compressor key technology

Cryogen management (helium, nitrogen)

Cryogen storage

LHC (accelerator & detectors) helium full inventory:

136 t, completed by July 08

(LHC accelerator storage capacity: 75 t in situ, 55 t of "virtual storage" in collaboration with industrial suppliers)

- Present total helium inventory at CERN: 150 t
 - LHC (accelerator & detectors) liquid nitrogen needs for a ful cool down: 11'500 t, completed by end of June 08
- (LHC accelerator full cool down: 10'000 ton in 33 continuous days; equivalent to 500 standard transportable containers delivered by industrial suppliers)

Courtesy of Laurent Tavian

Outline

- Types of Particle Accelerators
- Accelerator Characteristics
- RF Cavity
- Superconductivity and Superfluidity
- Examples of the Particle Accelerators:
 - The European Spallation Source (SRF cavities R&D)
 - The LHC (low-beta magnets environment and Controls)
 - The Tevatron (historical accelerator complex and technologies)

f

Fermilab Accelerator Division

Superconducting Magnets

- Magnets in the TEVATRON are superconducting.
- There are about 1000 magnets in the TEV
- The coils are made of niobuim-titanium alloy wire.
 - ♦ The size of the wire is 0.0003 inches (8 um)
 - ♦ There are 11 million wire-turns in a coil.
 - ♦ The dipole magnet is 21 feet long
 - ♦ There are 42,500 miles of wire in a magnet
- For 900 GeV operation, the magnets are kept at 4.6° Kelvin.
- For 1000 GeV operation, the cryogenic system has been upgraded to obtain a temperature of 3.6° Kelvin (-453°F)

Fermilab
Accelerator
Division

Superconducting Magnets

- The field in the magnets at 900 GeV is 4 Tesla (The Earth's magnetic field is 0.0003 Tesla, 13,000 times weaker then a TEV magnet)
 - An LHC magnet (Large Hadron Collider in Geneva, Switzerland)
 will have a magnetic field between 8-10 Tesla.
 - The theoretical limit for mechanically constraining a superconducting magnet is about 15 Tesla.
- The current flowing through a magnet at 900 GeV is 4000 Amperes.
 - The total inductance of the TEVATRON is 36 H.
 - The total magnetic stored energy in the TEVATRON at 900 GeV is 288 MegaJoules.
 - ◆ The time constant of the current dump system is 12 seconds.
 - If all the current in the TEV needed to be dumped, the dump resistors would have to dissipate energy at 24 megawatts

f

Fermilab Accelerator Division

TEVATRON Cryogenic System

- The cryogenic cooling system is:
 - the largest Cryogenic system in the world.
 - an International Historical Mechanical Engineering Landmark
 - capable of supplying 1000 liters/hour (35 grams/sec) of liquid helium at 4.2 K.
 - capable of absorbing heat at a rate of 23 kW and still maintain a temperature of 4.6 K.
- The cryogenic system consists of a:
 - Central Helium Liquifier which is the biggest in the world by a factor of 3 and consists of
 - + four 4000 hp helium compressors (flow rate of 539 g/sec at 175psi)
 - + two 40 ft tall cold boxes
 - helium gas tank farm with 30,000 liquid liter equivalent storage capacity
 - + a nitrogen system with a 152,000 liter storage capacity
 - 24 satellite refrigerators located around the ring.
 - which are connected by twenty six 250 meter liquid helium transfer lines.
 - + which are fed helium gas at 290 psi.

Tevatron magnet cross-section

6.5 km of superconducting magnets operating @ 3.6 Kelvin:

- +777 dipoles
- +216 quads
- +204 correction elements

- + coils made of NbTi alloy wire
- + wire size is 8 mm
- +11 million wire-turns in a coil
- + 42,500 miles of wire per magnet

One typical cooling loop for the Tevatron

EUROPEAN

SPALLATION SOURCE

The Central Helium Liquefier consists of:

- •Four parallel reciprocating 4,000 HP helium compressors (6.8 MW total power)
- •Two Claude cycle cold boxes (6,400 liters/hr, peak at 9000 liters/hr)
- •15 helium gas storage tanks (1,500 m3, 1.7 MPa, at RT)
- •One Nitrogen Reliquefier (4,680 liters/hr)
- •600,000 liters of LN2 storage
- Purification system

Summary

Accelerator Components requires:

- State-of-the-art material performance
- Challenging design
- Unique technologies

Lots of materials available at:

- US-Particle Accelerator School, http://uspas.fnal.gov/materials/materials-table.shtml
- CERN Accelerator School http://cas.web.cern.ch/cas
- Joint Universities Accelerator School

The domain of Particle Accelerator needs YOU !!!