

Beam Dynamics Aspects of Crab Cavities in LHC and CLIC

Javier Barranco García

CERN

29th November 2012

ESS Accelerator Division 2012 Retreat

Acknowledgements to Rogelio Tomás, Alexey Grudiev, Riccardo De Maria, Massimo Giovannozzi, Stephane Fartoukh, Eric Mcintosh, Andrea Latina, Laurent Deniau, Rama Calaga and Eduardo Marín.

Luminosity in colliders

The performance of a collider is typically evaluated by the luminosity (\mathscr{L}) achieved. It is a proportional factor between the cross section (σ_p) and the number of interaction per unit of time $\frac{dR}{dt}$,

$$\frac{dR}{dt} = \mathscr{L} \times \sigma_p$$

Analytically the luminosity writes,

$$\mathscr{L} = f_{\text{rev}} n_b \frac{n_1 n_2}{4\pi \sigma_x \sigma_y} \mathbf{S},$$

with *S* the geometric factor that counts for the loss of luminosity due to the crossing scheme (other correction factors are omitted here).

Is this effect neglilible? Some numbers¹

LHC 4 TeV (2012) $\rightarrow S=0.84$. LHC 7 TeV (2015) $\rightarrow S=0.82$. LHC 7 TeV (2023) $\rightarrow S \sim 0.37$ CLIC 1.5 TeV (???) $\rightarrow S=0.10$.

Way to recover from this loss? Crab crossing

¹Courtesy R. Calaga

Crab Cavities to recover Luminosity

- The crab cavity concept was first proposed by R. Palmer² for linear collider to recover head on collisions and avoid luminosity loss. A crab cavity is a deflection cavity operated with a 90° phase shift (crabbing).
- However for LHC was only considered from late mid-2000. First beam physics reviewed paper,

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 101002 (2009)

Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

Yi-Peng Sun (孙一鹏), * Ralph Assmann, Javier Barranco, Rogelio Tomás, Thomas Weiler, and Frank Zimmermann European Organization for Nuclear Research (CERN), Geneva, Switzerland

> Rama Calaga BNL, Upton, New York 11973, USA

> > Akio Morita (森田 昭夫)

High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan (Received 19 May 2009; published 14 October 2009)

²R.B. Palmer,"Prospects for high energy e-e-linear colliders", Annual Review of Nuclear and Particle Science 40, 6 529-592 (1990).

Crab Cavities to recover Luminosity

- The crab cavity concept was first proposed by R. Palmer³ for linear collider to recover head on collisions and avoid luminosity loss. A crab cavity is a deflection cavity operated with a 90° phase shift (crabbing).
- However for LHC was only considered from late mid-2000. First beam physics reviewed paper,
- The voltage needed depends on the relative position CC-IP, crossing angle and RF frequency.

 $^{^3}$ R.B. Palmer, "Prospects for high energy e-e-linear colliders", Annual Review of Nuclear and Particle Science 40, 6 529-592 (1990).

CC in HiLumi LHC

- One of the key ingredients of the HiLumi LHC is the use of crab cavities to recover *L*. Tests with beam in the SPS are planned from 2016.
- 3 compact crab cavities under design. Different geometries. 3 MV, 400 MHz.
- Due to lack of axial symmetry they present high order multipolar components of the main field. The \Im part of the multipoles is zero within the accuracy of the calculation i.e. $\phi_{\text{RFmult}} = 0$. But in phase with the main crabbing mode.
- Analytical evaluation of the optical aberrations showed a non neglilible tune shift for QWCAV.
- Two scenarions considered: H_{IP5}-V_{IP1} and H_{IP5}-H_{IP1}.

Figure: RWCAV (left), QWCAV (middle), 4RCAV (right).

	MBRC	RWCAV	QWCAV	4RCAV
b ₂	55	0	114	0
b ₃	7510	3200	1260	900
b_4	82700	0	1760	0
b_5	2.9×10^{6}	-0.52×10^{6}	-0.15×10^{6}	-2.44×10^{6}
b ₆	52×10^{6}	0	-1.66×10^{6}	0
b_7	560×10^{6}	-140×10^{6}	0	-650×10^{6}

Courtesy of A. Grudiev (IPAC12)

CC in HiLumi LHC

- One of the key ingredients of the HiLumi LHC is the use of crab cavities to recover *L*. Tests with beam in the SPS are planned from 2016.
- 3 compact crab cavities under design. Different geometries. 3 MV, 400 MHz.
- Due to lack of axial symmetry they present high order multipolar components of the main field. The \Im part of the multipoles is zero within the accuracy of the calculation i.e. $\phi_{\text{RFmult}} = 0$. But in phase with the main crabbing mode.
- Analytical evaluation of the optical aberrations showed a non neglilible tune shift for QWCAV.
- Two scenarions considered: H_{IP5}-V_{IP1} and H_{IP5}-H_{IP1}.

Tune shift,

$$|\Delta Q_{x,y}| = \frac{1}{4\pi} \beta_{x,y} \frac{b_2}{B\rho}$$

Tune shift with amplitude,

$$|\Delta Q/J_x| = \frac{3}{8\pi}\beta_{x,y}^2 \frac{b_4}{B\rho}.$$

Chromaticity shift,

$$\begin{split} |\Delta\xi_{x,y}| &= \frac{1}{4\pi} D_x \frac{2b_3}{B\rho} \beta_{x,y} \\ |\Delta\xi_{x,y}| &= \frac{1}{4\pi} D_y \frac{2a_3}{B\rho} \beta_{x,y} \end{split}$$

Coupling,

$$\begin{split} |\Delta Q_{\min}| &= \sqrt{\beta_x \beta_y} \frac{2 b_3}{B \rho} D_y \sigma_\delta \\ |\Delta Q_{\min}| &= \sqrt{\beta_x \beta_y} \frac{2 a_3}{B \rho} D_x \sigma_\delta \end{split}$$

CC in HiLumi LHC

- One of the key ingredients of the HiLumi LHC is the use of crab cavities to recover *L*. Tests with beam in the SPS are planned from 2016.
- 3 compact crab cavities under design. Different geometries. 3 MV, 400 MHz.
- Due to lack of axial symmetry they present high order multipolar components of the main field. The \Im part of the multipoles is zero within the accuracy of the calculation i.e. $\phi_{RFmult} = 0$. But in phase with the main crabbing mode.
- Analytical evaluation of the optical aberrations showed a non neglilible tune shift for QWCAV.
- Two scenarions considered: H_{IP5}-V_{IP1} and H_{IP5}-H_{IP1}.

Single RF Multipole Element Implementation in SixTrack

- First time ever long term stability studies including CC RF multipoles.
- They were modeled and included in the SixTrack code up to octupolar component.

Normal Quadrupole

$$\begin{split} \Delta x' &= -b_2 x \cos\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{REquad}}\right) \\ \Delta y' &= b_2 y \cos\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{REquad}}\right) \\ \Delta \delta &= \frac{b_2}{2} \left(x^2 - y^2\right) \sin\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{REquad}}\right) \frac{\omega}{c} \end{split}$$

Normal Sextupole

$$\begin{aligned} \Delta x' &= -b_3 \left(x^2 - y^2 \right) \cos \left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,sext}} \right) \\ \Delta y' &= 2b_3 xy \cos \left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,sext}} \right) \\ \Delta \delta &= \frac{b_3}{3} \left(x^3 - 3xy^2 \right) \sin \left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,sext}} \right) \frac{\omega}{c} \end{aligned}$$

Normal Octupole

$$\begin{split} \Delta x' &= -b_4 \left(x^3 - 3xy^2 \right) \cos \left(\frac{\omega z}{c} + \phi_s + \phi_{\rm RF,oct} \right) \\ \Delta y' &= b_4 \left(3x^2 y - y^3 \right) \cos \left(\frac{\omega z}{c} + \phi_s + \phi_{\rm RF,oct} \right) \\ \Delta \delta &= \frac{b_4}{4} \left(x^4 - 6x^2 y^2 + y^4 \right) \sin \left(\frac{\omega z}{c} + \phi_s + \phi_{\rm RF,oct} \right) \frac{\omega}{c} \end{split}$$

Skew Quadrupole

$$\begin{split} \Delta x' &= -b_2 y \cos \left(\frac{\omega z}{c_z} + \phi_s + \phi_{\text{RF},\text{quad}} \right) \\ \Delta y' &= -b_2 x \cos \left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF},\text{quad}} \right) \\ \Delta \delta &= b_2 x y \sin \left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF},\text{quad}} \right) \frac{\omega}{c} \end{split}$$

Skew Sextupole

$$\begin{split} \Delta x' &= -2b_3 xy \cos\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,sext}}\right) \\ \Delta y' &= b_3 \left(y^2 - x^2\right) \cos\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,sext}}\right) \\ \Delta \delta &= -\frac{b_3}{3} \left(y^3 - 3yx^2\right) \sin\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,sext}}\right) \frac{\omega}{c} \end{split}$$

Skew Octupole

$$\begin{split} \Delta x' &= -b_4 \left(y^3 + 3x^2 y\right) \cos\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,oct}}\right) \\ \Delta y' &= -b_4 \left(3y^2 x - x^3\right) \cos\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,oct}}\right) \\ \Delta \delta &= b_4 \left(x^3 y - y^3 x\right) \sin\left(\frac{\omega z}{c} + \phi_s + \phi_{\text{RF,oct}}\right) \frac{\omega}{c} \end{split}$$

HL-LHC DA Simulations w CC RF mult: H-V xing scheme

- Dynamic Aperture is the **boundary of the stable motion** in circular accelerators. It is determined by massive tracking campaigns where particles are tracked during 10⁵ turns at different initial amplitudes and angles.
- Two scenarios: 1) perfect machine and 2) with errors and corrections are applied to IRs and ARCS (60 seeds).
- In a H_{IP5}-V_{IP1} crossing scheme the overall tune shift due to the b₂ is cancelled for the QWCAV.

HL-LHC DA Simulations w CC RF mult: H-H xing scheme

In a H_{IP5}-H_{IP1} the large tune shift will produce resonance crossing with a significant drop of the DA ($\sim 11\sigma$)

Conclusion: high order multipoles can affect significantly the LHC DA either direct tune shift (b₂) or feed down effects. First rough alignment tolerances (simulations not shown here) provided,

- QWCAV (only HV) $|d_{x,y}| < 2 \text{ mm}$
- RWCAV (HH or HV) $|d_{x,y}| < 0.75 \text{ mm}$
- 4RCAV (HH or HV) |d_{x,y}| < 2.7 mm

Compact LInear Collider (CLIC)

Multi-TeV $e^+ \cdot e^-$ collider (2 beam acceleration \rightarrow accelerating gradient 100 MV/m)

Traveling Waist Regime in CLIC FFS

We observed in simulations an unexpected loss of luminosity of $\Delta \mathscr{L} / \mathscr{L}_{headon} \sim$ -10%. After careful study this loss was explained from the evolution of the beam waist during the collision or traveling waist regime⁴. This effect is explained from the aberrations induced due to a *z*-dependent off-center horizontal orbit in the Final Focus sextupoles produced by the crab cavity.

Figure: Left case w/o E-z correlation from the linac and right with correlation.

⁴V.E. Balakin et al. (Branch Inst. Nucl. Phys., Protvino, 1992).

Traveling Waist Scheme at CLIC Final Focus

Traveling waist in motion!

Fixing the problem

Three options: 1) change the main linac+BDS orientation to revent the crossing angle, 2) place the CC in a more convenient place from optics point view and 3) adding a second CC (less prefered).

Fixing the problem

Three options: 1) change the main linac+BDS orientation to revent the crossing angle, 2) place the CC in a more convenient place from optics point view and 3) adding a second CC (less prefered).

Conclusions

- Crab cavities are proved to be indispensable to recover head on luminosity in the presence of crossing angle.
- CCs are one of the main ingredients of the next HiLumi LHC. CC beam dynamis are progressing accordingly.
- CC design should aim for low high order multipoles to avoid optics distortions.
- The crossing scheme at CLIC previously a free parameter is now fixed to avoid luminosity loss. This study was recently approved by PRSTAB for publication.