

EUROPEAN SPALLATION SOURCE

RENdtl

Renato De Prisco

ADR - 29/11/ 2012

- DTL General Parameters
- Peak electric field
- DTL Geometric Parameters
- Tank Field Tuning Software
- DTL Tank Properties
- Post Couplers
- RENdtl

- Energy: 3 to 77 MeV in 4 tanks, total tanks length = 32m
- Power:
 - 1 klystron of 2.8 MW per tank, duty cycle = 4%
 - Power at RF tank input = 2.15 MW (30% margin for WG losses)
 - 2.15 MW > $P_{copper} \times 1.25 + P_{beam}$ ($I_{beam} = 50$ mA, 1.25 margin on Superfish computation)
 - 2 power couplers per tank (each peak power = 1 MW)
- E₀ linearly ramped in Tank1 from 2.8 MV/m to 3.2 MV/m
- $E_0 = 3.16 \text{ MV/m}$ in Tank 2-3-4
- PMQ: diameter=60mm, lengths = 45mm and 80mm
- $E_{surface} < 1.4 E_k (E_k = 18.4 MV/m @ 352.20 MHz)$

Moretti and others, have made extensive measurements of RF breakdown thresholds in the presence of a DC magnetic field. The result of their measurements are reproduced in the left-hand figure.

- Maximum surface electric field is at R = 12mm.
- At that point, for the 1^{st} cell, B = 0.092 T.
- $E_{K} = 18.43 \text{ MV/m at } 352.2 \text{MHz}.$

29/11/2012 - ADR 2012

Drift Tube Geometric Parameters

5

Gap and cell length from beam dynamics. A = A1, A2, A3, A4 means that A1 is referred to Tank1, A2 to Tank2, etc.

29/11/2012 - ADR 2012

Tank Field Tuning Software

6

Tank Field Tuning Software is useful to find face angles which:

- take into account the frequency shifts of stems;
- take in account frequency shifts of post coupler;
- give desired E0 (not only constant or ramped).

Tank Field Tuning Software is useful also to:

- take in account the maximum power dissipation;
- determine the number of post couplers and their positions;
- interact with the most popular 3D software.

Accelerating field

29/11/2012 - ADR 2012

Renato De Prisco

3D Validation

- Design procedure validated in a representative tank (20 cells) with aggressively ramped field
- 1 100 000 tetrahedra (revolution swept, similar to Superfish)

Tank Properties

Parameter/Tank	1	2	3	4
Cells Number	66	36	29	25
$E_0 \left[\frac{MV}{m}\right]$	2.8 to 3.2	3.16	3.16	3.16
Synchronous Phase [°]	-35 to -24	-24	-24	-24
End tank phase matching [°]	-8	-8	-8	-6
Tank length [m]	$7.95~(9.3\lambda)$	$7.62~(8.9\lambda)$	$7.76~(9.1\lambda)$	$7.72~(9.0\lambda)$
Q ₀ (Super Fish)	53000	56000	55000	55000
Modules Number	4	4	4	4
Peak Power in Copper $[MW]$	0.91	0.91	0.92	0.95
Beam output energy $[MeV]$	21.4	41.0	60.0	77.7
Peak RF Power (1.25 margin) $[MW]$	2.06	2.12	2.10	2.07

- Tuners compensate construction errors.
- Evaluation with realistic tolerances on important dimensions. (tank diameter, drift-tube lengths, drift tube diameter and face angles).
- Movable tuners compensate thermal deformations in operation.
- Evaluation with thermo-mechanical simulations.
- 1st cell of Tank 1 is the most sensitive. It is taken for all cells as a margin.

$\operatorname{Cell}_1(\operatorname{Tank}_1)$	$\frac{\text{Sensitivity}}{\left[\frac{MHz}{mm}\right]}$	Machining Error $[mm]$	Dynamic Error $[mm]$	Static Error $[MHz]$	Dynamic Error $[MHz]$
D _{Tank}	-045	± 0.100	0.010	± 0.045	0.005
D_{DT}	0.6	± 0.025	0.020	± 0.015	0.012
Gap	5.6	± 0.025	0.007	± 0.140	0.039
Face Angle	5.8	± 0.025	0.003	± 0.145	0.017
D_{Stem}	-0.136	± 0.025	0.010	± 0.003	0.001
Sum				± 0.348	0.075
Total				0.	405

DTL *stabilisation* or *compensation* against geometric errors (manufacturing, deformation) is done by Post Couplers.

Post Couplers must keep E0 within specifications $(\pm 1\%)$ in case of a reasonable perturbation of the end-cells.

Cell1 of Tank 1 is the most sensitive to perturbation.

Electric field of the post mode and the magnetic field of the accelerating mode produce a non-zero Poynting vector longitudinal component.

On the left figure, is plotted the accelerating field in a sample tank (case1) in which are present unexcited post couplers (left figure).

To study the effectiveness of post couplers in stabilising the field, the face angles are those that allow a flat field (right figure).

It is possible to get a very good result: the error on the field in a **perturbed** case is less than 0.7%.

The face angles perturbation of the end cell on the frequency (to have a flat field), is the same perturbation on the frequency given by an error in the order of tenths of a millimeter on the gap length.

Tilt Sensitivity

A Tilt Sensitivity (TS) indicates the effectiveness of post couplers in stabilising the field.

29/11/2012 - ADR 2012

These nominally unexcited bent post couplers stabilise the **natural ramp** in the field produced by perturbations of the end cells. Other perturbations that tend to disturb the natural distributions, excite the post couplers as necessary to prevent the field disturbance.

Parameter/Tank	1	2	3	4
Num cells	66	36	29	25
PCs distance $[m]$	0.35	0.33	0.35	0.32
Num PCs	22	23	28	24
Num PCs / Num cells	1/3	first $1/2$	1/1	1/1
Detuning $[MHz]$	0.17	0.17	0.20	0.17
Power $[MW]$	0.031	0.036	0.044	0.031

RENdtl

EXECUTION Time PMQ Length Height 0.00 Save	Browse Safe Dist. 0.00 Tuners Browse	RESULT Plot Cell Length Face Angle TTF ZTT Sync Phase E0	Power Active Power MAX [KW] 0 Power Calculation Power Optimization Current [mA] Corr. Fact. 0.00 0.00 Current [mA] Corr. Fact.
TUNING Ramp Fine TUNING Cells Cell Numb. Wall Image: Second stress of the second st	Post Coupler Active Diameter [cm] 0.00 Analysis 2D 3D Mesh Size AUTO MAX Number Err MAX [%] Position 0.00	Stem Active Diameter [cm] 0.00 ÷ SubTanks Active LMAX [cm] 0.00 ÷	3D Layout HFSS COMSOL Tank 0 Cell Post Coupler Stem Use Simmetry Create 3D RENATO DE PRISCO

RENdtl - Data Import

EXECUTION Time MQ Length Height 0.00 O.00	Browse Safe Dist. 0.00 V Tuners Browse	RESULT Plot Cell Length Face Angle TTF ZTT Sync Phase E0	Power Power MAX [KW] 0 Power Calculation Power Optimization Current [mA] Corr. Fact. 0.00 0.00 0.00 Current
TUNING Ramp Fine TUNING Cells Cell Numb. Yes Wall 0 No Mix Err MAX [%] Err MAX [%] Auto 0.00 0.00 OPERATION STOP PAUSE 24%	Post Coupler Active Diameter [cm] 0.00 Analysis 2D 3D Mesh Size AUTO MAX Number Err MAX [%] Position 0.00	Stem Active Diameter [cm] 0.00 ÷ SubTanks Active LMAX [cm] 0.00 ÷	3D Layout HFSS COMSOL Tank 0 Cell Post Coupler Stem Use Simmetry Create 3D RENATO DE PRISCO

29/11/2012 - ADR 2012

RENdtl - Plot Result

EXECUTION Time 0.00 0.00 Save	Browse Safe Dist. 0.00 Tuners Browse	RESULT Plot Cell Length Face Angle TTF ZTT Sync Phase E0	Power Active Power MAX [KW] 0 Power Calculation Power Optimization Current [mA] Corr. Fact. 0.00 0.00 Current
TUNING Ramp Cells Cell Numb. Wall 0 Mix Err MAX [%] Auto 0.00 OPERATION RUN STOP PAUSE 24%	Post Coupler Active Diameter [cm] 0.00 Analysis 2D 3D Mesh Size AUTO MAX Number Err MAX [%] Position 0.00	Stem Active Diameter [cm] 0.00 SubTanks Active LMAX [cm] 0.00 Contact	3D Layout HFSS COMSOL Tank 0 Cell Post Coupler Stem Use Simmetry Create 3D RENATO DE PRISCO

RENdtl - Tuning

EXECUTION Time PMQ Length Height 0.00 Save	Browse Safe Dist. 0.00 Tuners Browse	RESULT Plot Cell Length Face Angle TTF ZTT Sync Phase E0	Power Power MAX [KW] 0 Power Calculation Power Optimization Current [mA] Corr. Fact. 0.00 0.00 0.00 Current
TUNING Ramp Fine TUNING Cells Cell Numb. Yes Wall 0 No Mix Err MAX [%] No Auto 0.00 0.00 OPERATION STOP PAUSE 24%	Post Coupler	Stem	3D Layout
	Active	Active	HFSS COMSOL
	Diameter [cm] 0.00	Diameter [cm]	Tank 0
	Analysis	0.00	Cell
	2D 3D	SubTanks	Post Coupler
	Mesh Size AUTO	Active	Stem
	MAX	LMAX [cm]	Use Simmetry
	Number Err MAX [%]	0.00	Create 3D
	Position 0.00	Contact	RENATO DE PRISCO

29/11/2012 - ADR 2012

RENdtl - Post Couplers

EXECUTION Time PMQ Length Height 0.00 Save	Browse Safe Dist. 0.00 Tuners Browse	RESULT Plot Cell Length Face Angle TTF ZTT Sync Phase E0	Power Power MAX [KW] 0 + Power Calculation Power Optimization Current [mA] Corr. Fact. 0.00 + 0.00 +
TUNING Ramp Fine TUNING Cells Cell Numb. Yes Wall 0 Image: No Mix Err MAX [%] Err MAX [%] Auto 0.00 Image: OPERATION RUN STOP PAUSE 24%	Post Coupler Active Diameter [cm] 0.00 Analysis 2D 3D Mesh Size AUTO MAX Number Err MAX [%] Position 0.00	Stem Active Diameter [cm] 0.00 SubTanks Active LMAX [cm] 0.00 Contact	3D Layout HFSS COMSOL Tank 0 Cell Post Coupler Stem Use Simmetry Create 3D RENATO DE PRISCO

RENdtl - Stem

29/11/2012 - ADR 2012

RENdtl - Power

RENdtl - 3D Analisys

EXECUTION Time PMQ Length Height 0.00 Save	Browse Safe Dist. 0.00 Tuners Browse	RESULT Plot Cell Length Face Angle TTF ZTT Sync Phase E0	Power Power MAX [KW] 0 + Power Calculation Power Optimization Current [mA] Corr. Fact. 0.00 + 0.00 +
TUNING Ramp Cells Cell Numb. Wall 0 Mix Err MAX [%] Auto 0.00 OPERATION RUN STOP PAUSE 24%	Post Coupler Active Diameter [cm] 0.00 Analysis 2D 3D Mesh Size AUTO MAX Number Err MAX [%] Position 0.00	Stem Active Diameter [cm] 0.00 ÷ SubTanks Active LMAX [cm] 0.00 ÷	3D Layout HFSS COMSOL Tank 0 Cell Post Coupler Stem Use Simmetry Create 3D

29/11/2012 - ADR 2012

RENdtl - Contact

Thanks ESS Happy birthday Steve!

