

- DTL General Parameters
- Peak electric field
- DTL Geometric Parameters
- Tank Field Tuning Software
- DTL Tank Properties
- Post Couplers
- RENdtl

Parameters and Constraints

- Energy: 3 to 77 MeV in 4 tanks, total tanks length $=32 \mathrm{~m}$
- Power:
- 1 klystron of 2.8 MW per tank, duty cycle $=4 \%$
- Power at RF tank input $=2.15 \mathrm{MW}$ (30% margin for WG losses)
- $2.15 \mathrm{MW}>\mathrm{P}_{\text {copper }} \times 1.25+\mathrm{P}_{\text {beam }}\left(\mathrm{I}_{\text {beam }}=50 \mathrm{~mA}, 1.25\right.$ margin on Superfish computation)
- 2 power couplers per tank (each peak power $=1 \mathrm{MW}$)
- Eo linearly ramped in Tank1 from 2.8 MV/m to $3.2 \mathrm{MV} / \mathrm{m}$
- $\mathrm{E}_{0}=3.16 \mathrm{MV} / \mathrm{m}$ in Tank 2-3-4
- PMQ: diameter $=60 \mathrm{~mm}$, lengths $=45 \mathrm{~mm}$ and 80 mm
- $\mathrm{E}_{\text {surface }}<1.4 \mathrm{E}_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}}=18.4 \mathrm{MV} / \mathrm{m} @ 352.20 \mathrm{MHz}\right)$

Peak Electric Field

Moretti and others, have made extensive measurements of RF breakdown thresholds in the presence of a DC magnetic field. The result of their measurements are reproduced in the left-hand figure.

- Maximum surface electric field is at $\mathrm{R}=12 \mathrm{~mm}$.
- At that point, for the $1^{\text {st }}$ cell, $\mathrm{B}=0.092 \mathrm{~T}$.
- $\mathrm{E}_{к}=18.43 \mathrm{MV} / \mathrm{m}$ at 352.2 MHz .

Drift Tube Geometric Parameters

DT diameter $=90 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{c}}=5 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{o}}=8 \mathrm{~mm}$
$\mathrm{Ri}=3 \mathrm{~mm}$
$\mathrm{Rb}=10,10,11,12 \mathrm{~mm}$
$\mathrm{F}=7,5,5,4 \mathrm{~mm}$
Tank diameter $=520 \mathrm{~mm}$

Gap and cell length from beam dynamics.
$A=A 1, A 2, A 3, A 4$ means that A1 is referred to Tank1, A2 to Tank2, etc.

Tank Field Tuning Software

Start

\downarrow

Read:

1. gaps lengths;
2. cells lengths;
3. average energies;
4. corner radius;
5. inner nose radius;
6. outer nose radius;
7. tank diameter;
8. flat length;
9. drift tube diameter;
10. stem diameter;
11. bore radius;
12. desired Eo.

Tank Field Tuning Core Operations

Write face angles

Stop

Tank Field Tuning Software is useful to find face angles which:

- take into account the frequency shifts of stems;
- take in account frequency shifts of post coupler;
- give desired E0 (not only constant or ramped).

Tank Field Tuning Software is useful also to:

- take in account the maximum power dissipation;
- determine the number of post couplers and their positions;
- interact with the most popular 3D software.

Accelerating field

3D Validation

- Design procedure validated in a representative tank (20 cells) with aggressively ramped field
- 1100000 tetrahedra (revolution swept, similar to Superfish)

Stem and Compensating Ramping FA Effects EO Error [\%]

Parameter/Tank	1	2	3	4
Cells Number	66	36	29	25
$\mathrm{E}_{0}\left[\frac{\mathrm{MV}}{\mathrm{m}}\right]$	2.8 to 3.2	3.16	3.16	3.16
Synchronous Phase $\left[^{\circ}\right]$	-35 to -24	-24	-24	-24
End tank phase matching $\left[{ }^{\circ}\right]$	-8	-8	-8	-6
Tank length $[\mathrm{m}]$	$7.95(9.3 \lambda)$	$7.62(8.9 \lambda)$	$7.76(9.1 \lambda)$	$7.72(9.0 \lambda)$
Q $_{0}$ (Super Fish)	53000	56000	55000	55000
Modules Number	4	4	4	4
Peak Power in Copper $[\mathrm{MW}]$	0.91	0.91	0.92	0.95
Beam output energy $[\mathrm{MeV}]$	21.4	41.0	60.0	77.7
Peak RF Power $(1.25 \mathrm{margin})[\mathrm{MW}]$	2.06	2.12	2.10	2.07

Errors and Frequency Budget

- Tuners compensate construction errors.
- Evaluation with realistic tolerances on important dimensions. (tank diameter, drift-tube lengths, drift tube diameter and face angles).
- Movable tuners compensate thermal deformations in operation.
- Evaluation with thermo-mechanical simulations.
- $1^{\text {st }}$ cell of Tank 1 is the most sensitive. It is taken for all cells as a margin.

Cell $_{1}\left(\right.$ Tank $\left._{1}\right)$	Sensitivity $\left[\frac{M H z}{m m}\right]$	Machining Error $[\mathrm{mm}]$	Dynamic Error $[\mathrm{mm}]$	Static Error $[\mathrm{MHz}]$	Dynamic Error $[\mathrm{MHz}]$
$\mathrm{D}_{\text {Tank }}$	-045	± 0.100	0.010	± 0.045	0.005
$\mathrm{D}_{D T}$	0.6	± 0.025	0.020	± 0.015	0.012
Gap	5.6	± 0.025	0.007	± 0.140	0.039
Face Angle	5.8	± 0.025	0.003	± 0.145	0.017
$\mathrm{D}_{\text {Stem }}$	-0.136	± 0.025	0.010	± 0.003	0.001
Sum				± 0.348	0.075
Total				0.405	

DTL stabilisation or compensation against geometric errors (manufacturing, deformation) is done by Post Couplers.

Post Couplers must keep E0 within specifications ($\pm 1 \%$) in case of a reasonable perturbation of the end-cells.

Celll of Tank 1 is the most sensitive to perturbation.

Electric field of the post mode and the magnetic field of the accelerating mode produce a non-zero Poynting vector longitudinal component.

Post Couplers (case 1)

On the left figure, is plotted the accelerating field in a sample tank (case1) in which are present unexcited post couplers (left figure).

To study the effectiveness of post couplers in stabilising the field, the face angles are those that allow a flat field (right figure).

Post Couplers (case 2)

It is possible to get a very good result: the error on the field in a perturbed case is less than 0.7%.

The face angles perturbation of the end cell on the frequency (to have a flat field), is the same perturbation on the frequency given by an error in the order of tenths of a millimeter on the gap length.

A Tilt Sensitivity (TS) indicates the effectiveness of post couplers in stabilising the field.

$$
T S=\left(\frac{E_{0, \text { pert }}-E_{0, \text { unpert }}}{E_{0, \text { unpert }}}\right) \frac{1}{\Delta f}
$$

10 cells tank: cell equal to cell 10 of tank 1

10 cells tank: cell equal to cell 30 of tank1

Post Coupler Properties

These nominally unexcited bent post couplers stabilise the natural ramp in the field produced by perturbations of the end cells. Other perturbations that tend to disturb the natural distributions, excite the post couplers as necessary to prevent the field disturbance.

Parameter/Tank	1	2	3	4
Num cells	66	36	29	25
PCs distance $[m]$	0.35	0.33	0.35	0.32
Num PCs	22	23	28	24
Num PCs / Num cells	$1 / 3$	first $1 / 2$	$1 / 1$	$1 / 1$
Detuning $[\mathrm{MHz}]$	0.17	0.17	0.20	0.17
Power $[\mathrm{MW}]$	0.031	0.036	0.044	0.031

RENdtl

RENdtl - Data Import

RENdtI - Plot Result

RENdtl - Tuning

RENdtl - Post Couplers

RENdtl - Stem

RENdtI - Power

RENdtl - 3D Analisys

RENdtl - Contact

Thanks ESS
 Happy birthday Steve!

