

EUROPEAN SPALLATION SOURCE

Fabrication and material studies for SPL cavities at CERN

I. Aviles & N. Valverde on behalf of SPL team

AD retreat Mtg

Overview Copper cavity Niobium cavity R&D Conclusions

Overview

Pumping line & Magnetic shield to be provided IPN Orsay.

Tuners provided by CEA. Under testing at CERN

Stainless steel (316L /316LN) helium tank designed by CERN, supplied by CEA and welded to the cavity at CERN. Design already validated by CERN. 4 niobium cavities under fabrication at RI – delivery beginning 2013

Overview: 5-cell Cavity

PROPERTIES

5-cell cavity β =1 Material: Bulk Niobium RRR300 Flanges: 316LN Frequency: 704.4 MHz Quality factor: 10¹⁰ Nominal gradient E_{acc}= 25 MV/m

<u>Cavities under fabrication:</u> 4 niobium 5-cell cavities β=1 at Research Instruments (RI) 1 niobium monocell already fabricated by RI 1 niobium 5-cell cavity β=1 at CERN 2 copper 5-cell cavities β=1 (prototypes) already fabricated at CERN

Two copper cavities fabricated for the following purposes: Learning during the fabrication process RF measurements Bead pull measurement Validation of the tooling for the niobium cavity Surface treatments

Copper cavity

Half-cells shaped by Spinning

Brazing the SS flanges to the Cu tubes

Cut-off tube

Cut-off tube shaped by spinning + extrusion

Cut-off tube + Extremity half-cell

Equator:

Weld from the outside Full penetration: 2.4 mm

Iris:

Weld from both outside and inside Full penetration: 2.4 mm

Stiffening ring:

Weld from the outside Full penetration: 2.4 mm

Pick-ups:

Weld from the outside Full penetration: 2.2 mm

EUROPEAN SPALLATION SOURCE

Copper cavity

I. Aviles & N. Valverde

Copper cavity

Thanks to J.P. Rigaud

Concentricity betwen A and B: Cavity 1 =0.12 mm Cavity 2 = 0.09 mm Perpendicularity face flange to the axe A-B: Cavity 1: Eace A 0.10 mm / Eace B

Cavity 1: Face A 0.10 mm / Face B 0.08mm Cavity 2: Face A 0.24 mm / Face B 0.28mm

Bead pull measurement

In house built equipment providing the cavity's field distribution through bead pull measurement by S. Mikulas and N. Schwerg .

Optical inspection bench system

Inspection of the inner part of the welds with an optical inspection bench system by J.K. Chambrillon

Dimensional control by CMM

Thanks to D. Pugnat

Lund, 28 November 2012

Electropolishing (EP) is an electrochemical process used to polish, passivate, and deburr metal parts. It results in a very smooth and shiny surface. During the first test 90 microns were removed.

HF (48%) and H2SO4 (> 96%) mixed in a volume ratio of 1:9

Courtesy of L. Ferreira

Material defects made evident after EP

source Niobium cavity-Monocell from RI

Full inspection of the monocell:

Radiographic examination

We found cracks only in one beam tube

Ultrasonic examination:

Brazing between niobium tube and SS flanges. They fulfilled the requirements.

Optical inspection :

Courtesy of J.K. Chambrillon

Destructive examination:

Cutting the monocell to inspect the cracks and study their origin

During fabrication at RI it was detected a material discontinuity. Non destructive and destructive testing were carried out to asses the origin of the defect.

Niobium cavity-Niobium tube

Radiographic examination

Penetrant testing

Niobium cavity-Niobium tube

SEM images of the defect

Niobium cavity-Niobium tube

Metallography of the cross section

Evaluation of the defect's origin still on going

Lund, 28 November 2012

CÉRN EUROPEAN Niobium cavity-Material studies SPALLATION

SOURCE

Before cutting the monocell a cold RF test (2 K) was done and even with the defects the results were encouraging.

Courtesy of M. Therasse

Niobium cavity at CERN

Spinning of 2 half-cells and 1 beam tube at HEGGLI for testing

EUROPEAN SPALLATION

SOURCE

RF measurements.

I. Aviles & N. Valverde

Niobium cavity at CERN

New EB welding machine at CERN (11 m³);

- SS vacuum chamber;
- Vacumm level 1x10⁻⁵ mbar up to 10⁻⁷ mbar (cryo. pump)→ Adecuate for high RRR niobium welds.

Foreseen welding tests for optimization of parameters:

Thck = 1.7 EBW 120 250 ✤ 10 linear welding tests 386 20 Thck= 1.7 ✤ 4 circular welding tests - (same diameter as HC) Thck= 1.7 ↓ EBW ✤ 3 circular welding tests at the Equator 386 EBW ✤ 3 circular welding tests at the iris ✤ 3 welding tests- Stifenning ring+ HC

Brazing Nb / SS 316 LN is a key technology Developed at CERN in 1987

Test I-Nb tube + SS flange DN100

EUROPEAN SPALLATION

SOURCE

Ultrasonic examination (by immersion) of the brazed area

Leak test

est

Thermal shock liquid N2 (x5)

Ultrasonic examination

Leak test
Thermal shock liquid N_2 (x5)
Ultrasonic examination
Leak test
Electropolishing
HT (600°C/24h)
Electropolishing
Leak test
Ultrasonic examination
Thermal shock liquid N_2 (x5)
Ultrasonic examination
Leak test
Shear test
Leak test
Ultrasonic examination
Assembly test
Metallographic examination
Fractography
SEM assesment + EDS

Shear test (3 tons)

Assembly test

EDS analysis

100µm

Cr K_SERIES

100µm

Cu

Test II- Effect of the chemical etching on the brazed joint

The bath removed \sim 300 μ m of Cu The bath attacks more the Nb than the SS

Full results in presention I. Aviles and N. Valverde SLHiPP2

It was decided to mask the brazed joint with a polymer

Test III- Effect of EB weld close to the brazed joint

% AMP

120 -110 -

100-

90-

70 -

- 0.83

-0.00 -0.92 -1.94 -3.10 -4.44 -6.02 -7.98 -10.46 -13.98

2.8% 2.9%

> 2.6% 3.8% 0.3% 6.0% 7.6%

12.0%

R&D-Nb/Ti weld

Nb - Ti(V) EBW with improved welding parameters Heat treatment: 24 hours @ 600 °C

R&D-Nb/SS weld

Nb / SS(316LN) EBW with Cu -OFE plate between the two metals

FR

R&D-Nb/SS weld

Brittle fracture Interface Nb - Cu

New metals will be tested to be used between Nb and SS

Conclusions

Copper cavity – 2 cavities fabricated successfully and very useful for the development of the RF measurements.

Niobium cavity- 4 cavities under fabrication at RI. Manufacturing in stand-by until is better understood the origin of the monocell's defects.

Niobium cavity at CERN- to obtain expertise in the manufacturing processes.

R&D-

Brazing: It has been proved that is a functional solution for the niobium/SS interfaces for superconducting cavities

Nb/Ti weld- first tests results point out that could be a suitable solution for niobium/titanium interfaces Nb/SS weld- first atempt was not satisfactory. New solutions are under study

Thanks for your attention!!

We would like to thank the people who help us in our work:

T. Tardy, O. Capatina, S. Atieh, T. Renaglia, K. Schirm, F. Pillon, G. Arnau Izquierdo, M. Esposito, N. Joanon, A. Vacca, S. Mikulas, N. Schwerg, JM Dalin, A. Piguiet, A. Gerardin, M. Malabaila, S. Forel, F. Fesquet, L. Ferreira, JK Chambrillon, A. Benoit, L. Remandet, S. Marcuzzi, D. Pugnat, JP. Rigaud.

- a—The alternating current flowing through the coil at a chosen frequency generates a magnetic field around the coil.
- b—When the coil is placed close to an electrically conductive material, eddy current is induced in the material.
- c—If a flaw in the conductive material disturbs the eddy current circulation, the magnetic coupling with the probe is changed and a defect signal can be read by measuring the coil impedance variation.