THE INFLUENCE OF PARASITIC MODES ON THE ESS SCRF LINAC

Rob Ainsworth

John Adams Institute for Accelerator Science

OUTLINE

- Cavity Modes
- Spoke Cavities
- Elliptical Cavities
- Influence of Parasitic Modes
- Same Order Modes (SOMs)
- Higher Order Modes (HOMs)

CAVITY MODES

D|L

Try simple azimuthally symmetric trial solution $E_{z}(r, z, t)=R(r) e^{i w t}$

$$
\text { Wave Equation } \quad \frac{\partial^{2} E_{z}}{\partial z^{2}}+\frac{1}{r} \frac{\partial E_{z}}{\partial r}+\frac{\partial^{2} E_{z}}{\partial r^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}=0
$$

Boundary Condition: No tangential E field No normal B field

ACCELERATING MODE

Transverse Magnetic Mode (TM)

$$
E_{z}=E_{0} J_{0}\left(k_{r} r\right) \cos \omega t \quad B_{\theta}=-\frac{E_{0}}{c} J_{1}\left(k_{r} r\right) \sin \omega t
$$

However, not the only mode ...

HIGHER ORDER MODES

Quadrupole

ELLIPTICAL CAVITIES

N coupled pillbox cavities

Modes split into passbands with differing phase advance per cell

Two families of ellipticals

$\pi-\mathrm{mode}$

TEM RESONATOR

Traverse ElectroMagnetic Mode

SPOKE RESONATORS

John Adams Institute for Accelerator Science

THE NEED FOR 3 FAMILIES

$$
(R / Q)_{n}(\beta)=\frac{\left|\int_{-\infty}^{\infty} E_{z, n}(r=0, z) e^{i \omega_{n} \frac{z}{\beta c}} d z\right|^{2}}{\omega_{n} U_{n}}
$$

THE NEED FOR 3 FAMILIES

$$
(R / Q)_{n}(\beta)=\frac{\left|\int_{-\infty}^{\infty} E_{z, n}(r=0, z) e^{i \omega_{n} \frac{z}{\beta c}} d z\right|^{2}}{\omega_{n} U_{n}}
$$

PARASITIC MODES

MOTIVATION

Beam induced modes in SCRF cavities may drive the beam unstable and increase the cryogenic load, therefore HOM couplers are usually installed to provide sufficient damping.
..... However, recent experience at SNS has shown couplers may be unnecessary and have degraded performance of the machine.

Questions:
Will SOMs mean the cavity design needs to be changed? Does ESS need HOM couplers?

- Beam dynamics

Simulations performed by myself

- Power

Simulations performed at CEA Saclay

SAME ORDER MODES

Part of

т/5 - mode 693.19 MHz
same passband as fundamental

$2 \pi / 5-$ mode 696.30 MHz
$3 \pi / 5-$ mode 700.14 MHz Same order, just different phase advance

$4 \pi / 5$ - mode 703.2 MHz
π - mode
704.42 MHz

High R/Q with respect to accelerating mode \Rightarrow Modify geometric beta \Rightarrow Alter velocity partitioning

SIMULATION INFO

Simulate cavity geometries to extract field-maps

Determine R / Q, frequencies of modes below cutoff

Calculate the

 influence of modes of beam quality

SIMULATION INFO

Kick

Energy and time error calculated at each cavity with respect to synchronous bunch

$$
\Delta E^{(m+1)}=\Delta E^{(m)}+\Delta U_{R F}^{(m)}+\Delta U_{n}^{(m)}
$$

$$
\Delta t^{(m+1)}=\Delta t^{(m)}+(d t / d E)_{E}^{(m)} \cdot \Delta E^{(m)}
$$

- I million point-like bunches tracked per linac
- SOM/HOM frequencies distributed with a gaussian spread
- $\sigma=1.09 \times 10^{-3} .\left|\mathrm{ff}_{0}-\mathrm{fhom}\right|$

$$
\Delta U_{n}=q\left(\Re\left(V_{n}\right) \cos \left(\omega_{n} d t\right)-\Im\left(V_{n}\right) \sin \left(\omega_{n} d t\right)\right)-\frac{1}{2} \Delta V_{q, n}
$$

$$
\Delta V_{q, n}=-q \frac{\omega_{n}}{2}(R / Q)_{n}(\beta)
$$

COMPARISON OF LINACS

It is possible to design a linac susceptible to SOMs however the latest baseline shows no adverse effects

CURRENT \& DAMPING SCAN

$$
T_{d, n}=2 Q_{L, n} / \omega_{n} \approx 2 Q_{E X, n} / \omega_{n}
$$

HIGHER ORDER MODES

Need to determine if HOMs are a problem Are HOM couplers needed?

CURRENT \& DAMPING SCAN

Away from a machine line, HOMs are of no concern

SAFE DISTANCE

HOMs should be at least 3 MHz away from a machine line in cavity design

$$
f_{M L}=n \cdot 352.21 \mathrm{MHz}
$$

SUMMARY

- SOMs
- It is possible to design a linac susceptible to SOMs
- Current baseline shows no problems up ~90 mA
- HOMs
- High R/Q modes are not a concern far from ML
- $\left|f_{\text {hom }}-f_{\text {mil }}\right|>3 \mathrm{MHz}$
- HOM Couplers are not required!
\Rightarrow Limits future flexibility (chopping schemes $>100 \mathrm{kHz}$)

