

THE INFLUENCE OF PARASITIC MODES ON THE ESS SCRF LINAC

Rob Ainsworth

John Adams Institute for Accelerator Science

OUTLINE

- Cavity Modes
 - Spoke Cavities
 - Elliptical Cavities
- Influence of Parasitic Modes
 - Same Order Modes (SOMs)
 - Higher Order Modes (HOMs)

CAVITY MODES

PILLBOX CAVITY

Try simple azimuthally symmetric trial solution $E_z(r,z,t)=R(r)e^{iwt}$

Wave Equation
$$\frac{\partial^2 E_z}{\partial z^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{\partial^2 E_z}{\partial r^2} - \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} = 0$$

Boundary Condition: No tangential E field No normal B field

ACCELERATING MODE

Transverse Magnetic Mode (TM) $E_z = E_0 J_0(k_r r) \cos \omega t$ $B_\theta = -\frac{E_0}{c} J_1(k_r r) \sin \omega t$

However, not the only mode ...

John Adams Institute for Accelerator Science

HIGHER ORDER MODES

ELLIPTICAL CAVITIES

N coupled pillbox cavities

Modes split into passbands with differing phase advance per cell

Two families of ellipticals operating in π - mode @ 704.42 MHz

π-mode

TEM RESONATOR

Traverse ElectroMagnetic Mode

SPOKE RESONATORS

Variant of TEM cavity

n stacked HWRs

Each spoke rotated by 90°

THE NEED FOR 3 FAMILIES

$$(R/Q)_n(\beta) = \frac{\left|\int_{-\infty}^{\infty} E_{z,n}(r=0,z)e^{i\omega_n \frac{z}{\beta c}} dz\right|^2}{\omega_n U_n}$$

THE NEED FOR 3 FAMILIES

$$(R/Q)_n(\beta) = \frac{\left|\int_{-\infty}^{\infty} E_{z,n}(r=0,z)e^{i\omega_n \frac{z}{\beta c}} dz\right|^2}{\omega_n U_n}$$

PARASITIC MODES

MOTIVATION

Beam induced modes in SCRF cavities may drive the **beam unstable** and **increase the cryogenic load**, therefore **HOM couplers** are usually installed to provide sufficient damping.

.....However, recent experience at SNS has shown **couplers may be unnecessary** and have **degraded performance** of the machine.

SAME ORDER MODES

π-mode 352.21 MHz

0-mode 362.69 MHz

396.96 MHz

Part of same passband as fundamental

Same order, just different phase advance

π/5 - mode 693.19 MHz

2π/5 - mode 696.30 MHz

3π/5 - mode 700.14 MHz

4π/5 - mode 703.2 MHz

π - mode 704.42 MHz

Close in frequency to accelerating mode Cannot damp using couplers

Wednesday, 28 November 2012

SIMULATION INFO

Simulate cavity geometries to extract field-maps Determine R/Q, frequencies of modes below cutoff

Calculate the influence of modes of beam quality

John Adams Institute for Accelerator Science

SIMULATION INFO

Energy and time error calculated at each cavity with respect to synchronous bunch

$$\Delta E^{(m+1)} = \Delta E^{(m)} + \Delta U_{RF}^{(m)} + \Delta U_n^{(m)}$$

- I million point-like bunches tracked per linac
- SOM/HOM frequencies distributed with a gaussian spread

John Adams Institute for Accelerator Science

• $\sigma = 1.09 \times 10^{-3}$. |f₀ - f_{hom}|

$$\Delta t^{(m+1)} = \Delta t^{(m)} + (dt/dE)_E^{(m)} \cdot \Delta E^{(m)}$$

$$\Delta U_n = q(\Re(V_n)\cos(\omega_n dt) - \Im(V_n)\sin(\omega_n dt)) - \frac{1}{2}\Delta V_{q,n}$$

$$\Delta V_{q,n} = -q \frac{\omega_n}{2} (R/Q)_n(\beta)$$

COMPARISON OF LINACS

It is possible to design a linac susceptible to SOMs however the latest baseline shows no adverse effects John Adams Institute for Accelerator Science

CURRENT & DAMPING SCAN

 $T_{d,n} = 2Q_{L,n}/\omega_n \approx 2Q_{EX,n}/\omega_n$

CURRENT & DAMPING SCAN

Away from a machine line, HOMs are of no concern John Adams Institute for Accelerator Science

SAFE DISTANCE

SUMMARY

- SOMs
 - It is possible to design a linac susceptible to SOMs
 - Current baseline shows no problems up ~90 mA
- HOMs
 - High R/Q modes are not a concern far from ML
 - $|f_{hom} f_{ml}| > 3 \text{ MHz}$
 - HOM Couplers are not required!

→Limits future flexibility (chopping schemes > 100kHz)