

MEDIUM AND HIGH BETA ELLIPTICAL PROTOTYPE CAVITIES

TAC 13

07/04/2016

Franck PEAUGER

on behalf of the CEA Saclay Cavity team

DE LA RECHERCHE À L'INDUSTRIE

ESS requirements	Medium beta High beta				
	704	40			
Frequency (MHZ)	/04.42				
Nominal Accelerating gradient (MV/m)	16.7 19.9				
Q_0 at nominal gradient	> 5e9				
Cavity dynamic heat load (W)	4,9	6,5			

Cavity number

From JL. Biarotte, SLHIPP-4 meeting 2014

1) DESIGN:

RF

Mechanical

2) PROTOTYPING:

- Fabrication
- Surface preparation at CEA
- Test in vertical cryostat at CEA

(and then in prototype cryomodule demonstrators ECCTD)

3) COLLABORATIONS

✤ Interface drawings

1) **DESIGN**

RF PARAMETERS

	Medium	High	
Geometrical beta - β_{geom}	0.67	0.86	
Frequency [MHz]	704.42		
Number of cells	6	5	
Operating temperature [K]	2		
Maximum surface field in operation [MV/m]	40	44	
Nominal Accelerating gradient E _{acc} [MV/m]	16.7	19.9	
Accelerating length $L_{acc} = (n_{cell}, \beta_{geom}, \lambda/2)$ [m]	0.855	0.915	
Nominal Accelerating Voltage $V_{acc} = (E_{acc} \times L_{acc})$ [MV]	14.3	18.2	
Theoretical R_{BCS} (1) at operating temperature [n Ω]	3.2	2	
G [Ω]	196.6	241	
Q ₀ at operating temperature for R _{BCS}	6.14x10 ¹⁰	7.53x10 ¹⁰	
Q ₀ at nominal gradient	> 5 x10 ⁹		
Cavity dynamic RF heat load [W]	4,9	6,5	
Q _{ext}	7.5x10⁵	7.6x10⁵	
Iris diameter [mm]	94	120	
Beam tube diameter [mm]	136	140	
Cell to cell coupling κ [%]	1.22	1.8	
π and 5 π /6 or 4 π /5 mode separation [MHz]	0.54	1.2	
E_{pk}/E_{acc} at β_{opt}	2.36	2.2	
B_{pk}/E_{acc} [mT/(MV/m)] at β_{opt}	4.79	4.3	
B_{pk} at β_{opt} and nominal E_{acc} [mT]	80	85.6	
Maximum r/Q [Ω] at β_{opt}	394	477	
r/Q [Ω] at β_{geom}	367	435	
Optimum beta β_{opt}	0.705	0.92	
Stored energy [J] at nominal E_{acc} and β_{opt}	117.3	156.9	
RF Power P_{fwd} [kW] with power coupler at Q_{ext} and β_{geom} (2)	185	250	

Designed by:

• HB: G. Devanz, J. Plouin,

CEA Saclay, 2010-2011

 <u>MB</u>: G. Constanza, Univ. of Lund, 2013-2014

(1)
$$R_{BCS} = 2 \cdot 10^{-4} \frac{1}{T} \left(\frac{f}{1.5}\right)^2 e^{-17.67/T}$$

(2)
$$P_{fwd} = \frac{V_{acc}^{2}}{4 \cdot \frac{r}{Q} \cdot Q_{ext}}$$

Both cavities are designed to have HOM at more than 5 MHz from beamline frequencies

		F [MHz]
	Beam frequency	352.21
	2 nd harmonic frequency	704.42
	3 rd harmonic frequency	1056.63
	4 th harmonic frequency	1408.84
1	5 th harmonic frequency	1761.05
	6 th harmonic frequency	2113.26
	7 th harmonic frequency	2465.47

Most of the elements are identical for medium and high beta

2) PROTOTYPING

Cea

CAVITY FABRICATION & PREPARATION BEFORE CRYOMODULE INTEGRATION

For cavity prototypes used in the Technological demonstrators

DEVELOPMENT PLAN OF ELLIPTICAL PROTOTYPES

DEVELOPMENT PLAN OF ELLIPTICAL PROTOTYPES

THE TWO HIGH BETA « EARLY PROTOTYPE » CAVITIES

- \Rightarrow HOM ports only for HOM measurements (suppressed now)
- \Rightarrow Niobium from Tokyo Denkai, <u>4.5 mm thickness</u>
- \Rightarrow Kick-off in Sept. 2012
- \Rightarrow Trimming operations of dumbbells in presence of CEA staff

« ESS086-P01 » manufactured by E. ZANON F_{π} = 703.553 MHz Field flatness: 86%

« ESS086-P02 » manufactured by RI F_{π} = 703.704 MHz Field flatness: 40% Bad angles stiffning rings

Target frequency, at 300 K before chemical etching: F_{π} = 703.822 MHz

TANK INTEGRATION

ESS086-P01 (ZANON)

- $\blacktriangleright \Delta F = +9$ kHz only due to tank welding
- Pressure and leak test done successfully
- Delivered at CEA in Feb. 2015

ESS086-P02 (RI)

Tank welding in progress

DANGEROUS HIGHER ORDER MODE CLOSE TO 1408.8 MHZ

df/dV [MHz/mm3]

Slater coefficient analysis which

represents frequency sensitivity to volume changes:

421.32 MHz

z-axis [cm]

Both high beta prototype cavities are not conform with the ESS HOM Requirement *Reminder: HOM shall be at more than 5 MHz from beamline frequencies*

- 3D measurements of the cavity shape have been done
- Shape have been reconstructed in the simulation software HFSS

Design (at 300K)	Measured on ESS086-P01	Calculated with measured shape (HFSS)	Measured on ESS086-P02	
1418.178	1402.254	1403.8	1407.848	
1418.674	1404.666	1406.8	1408.258	

 ⇒ On P01 cavity (from ZANON), a strong internal shape deviation in this dome region (more than 1 mm instead of 0.3 mm) explains very well the frequency decrease of the two

dangerous HOM

On future cavities, better control of cell shapes and better selection process have been implemented

704 MHz

14

SURFACE RESISTANCE

> Measured residual resistance: Rres = 7.5 n Ω , compatible with usual measured values on 704 MHz cavities

VERTICAL TEST RESULTS AT 2K

Both prototype cavities already met the ESS requirements after the first test:
 Very encouraging results

Ce Heat TREATMENT AT CERN IN OCTOBER 2014

- > Not possible at ZANON because the oven was very busy with XFEL cavities
- IPNO not ready yet
- \rightarrow « grand four » at CERN, already qualified with SPL type cavities

650 °C under vacuum during 24 hours

Degreasing before treatment

« grand four » below

Blind hole not well rinsed ?

VERTICAL TEST RESULTS AT 2K

- Slight degradation of the performances after thermal treatment (pollution?)
- Surface resistance doubled (20 nohm)

After 65 µm BCP, surface resistance recovered at low field but still Q0 degradation at gradient

Cavity put in second priority (after medium beta cavities)

DEVELOPMENT PLAN OF ELLIPTICAL PROTOTYPES

Cea The Six medium beta prototypes for m-ecct 😂 🦉

selection

- \Rightarrow Niobium from Tokyo Denkai, <u>4.3 mm thickness</u>
- \Rightarrow Contract awarded by E. ZANON
- \Rightarrow Kick-off in Sept. 2014

Half cells

Dumbbells

Cavity n°1 (ESS067-P01)

Cavity n°2 (ESS067-P02)

Enrico Cenni

New selection process to reach the accelerating mode frequency, the cavity length and the HOM frequencies at the same time

Stage	Controls criteria	Selection criteria	
Half cells	 3D measures Zero mode frequency HOM	Less than 20% of points out of tolerance	
Dumbbells & End groups	 3D measures Zero and Pi mode frequency HOM 	Bethe formula	$f_{DB}^{2} = \frac{1}{2}(f_{a}^{2} + f_{b}^{2}) - Kf_{0}^{2} \pm \sqrt{\frac{1}{4}(f_{a}^{2} - f_{b}^{2})^{2} + K}$
Cavity	 Trimming Passband modes frequency HOM 	Trim and pull formula	$t = \frac{dF + S_A(L_0 - L_f)}{S_t + S_A}$

- > Best DB are chosen and placed at the center of the cavity where the 5th harmonic $\pi/6$ mode has stronger EM field
- The first two cavities where manufactured within 0.3 mm length and frequency within 150 kHz computed values
- Improvement shall be done into predicting frequency change due to chemistry (300 kHz/µm measured instead of 350 kHz/µm)
- Studying the possibility to replace detailed 3D measurements by RF-HOM measurements

HALFCELLS AND DUMBBELLS: RF MEASUREMENTS

Central cells

0.5 MHz

1

700

2

Pi mode

702

F (MHz)

23

3

- The frequency spread is conserved between halfcells and dumbbells (~0.5 MHz) \geq
- The larger spread on end cells is due to poor statistic and learning curve. It has no important impact. \geq

695

696

FIELD FLATNESS TUNING

Tuning sensitivity	Simulation	Measured	
[kHz/mm]	211.26	210.8	

ESS067-P01

S21 Measure Medium- β pre-tuning results

25

CHEMICAL TREATMENT (BCP) WITH ACID MIXTURE 1:1:2.4

Rinsing after the BCP

26

TEST IN VERTICAL CRYOSTAT

- > Hypothesis of the Q-disease: high hydrogen concentration
- The ESS067-P01 has not been heat treated yet and should make significant progress after treatment (like the SPL cavity)

PLANNING OF THE MB CAVITIES

	d	ESS0687-P01	ESS0687-P02	ESS0687-P03	ESS0687-P04	ESS0687-P05	ESS0687-P06
Trimming + Final welding @ EZ + FAT	2+1 sm	ok	08/02 - 11/03	12/05 - 01/06	1/06 - 22/06	22/06 - 12/07	13/07 - 02/08
Conditionning/transport to Saclay	1 sm	ok	18/03	yes	yes	yes	ves
Reception tests @ CEA (SAT)	1 sm	ok	21/03 - 25/03	08/06 - 14/06	29/06 - 05/07	20/07 - 26/07	10/08 - 23/08
Field Flatness 1	2 sm	ok	29/03 - 07/04	16/06 - 01/07	07/07 - 20/07	27/07 - 09/08	24/08 - 08/09
BCP_200	2 sm	18/01 - 09/02	08/04 - 22/04	01/07 - 18/07	21/07 - 04/08	10/08 - 31/08	09/09 - 25/09
HPR + Cleanroom assembly	1 sm	09/02 - 16/02	27/04 - 04/05	no	no	no	no
Mounting on cv-insert	2 j	17/02 - 18/02	11/05 - 15/05	no	no	no	no
CV-test n°1	1 sm	18/02 - 26/02	16/05 22/05	no	no	no	no
Heat treatment incl. transport @ EZ	2 sm	03/03 - 15/04	23/05 - 05/06	19/07 - 02/08	05/08 - 18/08	01/09 - 14/09	26/09 - 09/10
Field Flatness 2: verification (+Ajust.)	1 j	15/04	06/06	03/08	19/08	15/09	10/10
Flash BCP	3 j	18/04 - 20/04	no	no	no	no	no
HPR (with ESS067 nozzle)	3 j	21/04 - 25/04	no	no	no	no	no
Cleanroom assembly	2 j	26/04 - 27/04	no	no	no	no	no
Mounting on cv-insert	2 j	28/04 - 29/04	no	no	no	no	no
CV-test n°2	1 sm	02/05 - 12/05	no	no	no	no	no
Transport	1 sm	yes	no	no	no	no	no
He-tank welding	1 ms	18/05 - 17/06	04/07 - 02/08	03/08 - 31/08	01/09 - 27/09	28/09 - 26/10	26/10 - 22/11
Transport	1 sm	ves	yes	yes	yes	yes	e s
Reception tests (SAT)	1 sm	24/06 - 29/06	10/08 - 16/08	07/09 - 13/09	05/10 - 11/10	02/11 - 08/11	30/11 - 06/12
Flash BCP	3 j	04/07 - 06/07	22/08 - 24/08	14/09 - 19/09	12/10 - 17/10	09/11 - 14/11	07/12 - 12/12
HPR (with ESS067 nozzle)	3 j	07/07 - 11/07	25/08 - 29/08	20/09 - 22/09	18/10 - 20/10	15/11 - 17/11	13/12 - 15/12
C/R assembly	1sm/3j	12/07 - 13/07	30/08 - 01/09	23/09 - 27/09	21/10 - 25/10	18/11 - 22/11	16/12 - 20/12
Mounting on cv-insert	2 j	18/07 - 19/07	02/09 - 05/09	28/09 - 29/09	26/10 - 27/10	23/11 - 24/11	21/12 - 22/12
CV-test n°3	1 sm	20/07 - 27/07	06/09 - 13/09	30/09 - 07/10	28/10 - 08/11	25/11 - 02/12	23/12 - 05/01

DEVELOPMENT PLAN OF ELLIPTICAL PROTOTYPES

NIOBIUM:

- TOKYO DENKAI have won the call for tender for the supply of the niobium for the 5 superconducting cavities
- The order include spare parts for the cavity manufacturer
- The contract have been signed by the company

CAVITIES:

- Drawings and technical specifications are 95% ready
- Call for tender will be launched within few days

Tokyo Denkai Co., Ltd. 3·20, Iigashisuna 1-chome, Koto-ku Tokyo, 136-0074, Japan Tikl: +81:3-3669:2165 FAX: +81:3-3669:2063 FAX: +81:3-3669:7063 Messrs.: CEA Saclay ref. CEA-ESS-CMD-ST-0002 A						10801 Pay				
140 0130								Quotation Da	te: January	8, 2016
			Q	uota	ation					
Settled part	Niobium sheet	s, rods	and thick	tubes.						
Item	Usage	RRR		Dime	nsions (mm)			Price/Unit	Quantity	Amount
			Length	Width	Thickness	øin	øout	[EURO]	lpcs	IEUROI
High beta 5 cells	Stiffeners	> 250	555	220	4.0				5	. 4
cavity, quantity 5	Half cells	> 250	500	500	3.9			-	50	. 4
	Beam tubes	> 250	520	480	3.2			1	5	
	Coupler port	> 250	370	345	3.2		50	-	1	. 3
	Pick'up	> 250	250			100	100	-	- 1	. 3
Addition of all stress for	Half salls	> 250	-10	500	2.0	130	100		0	
Additional pieces for	Room tuboo	> 250	500	490	3.9				0	
spare parts	Couples post	> 250	270	245	2.0				1	
	Couplet pore	- 200	010	040	0.2					
Sub-Total Price										
Shipping and Insuran	ce Fee									
Total Price										
Condition Technical Specifications applicable to the supply of niobium material destined to th manufacturing of 5 superconducting cavities for the ESS HECCTD cryomodule. Tokyo Denkai request changing tolerances of width and length from (+2)+0) to (+3)+ 0)					estined to the module. 2/-0) to (+3/-					
Time of Shipment		Within	3 month	ns after	receiving yo	ur off	icial o	rder.		
Payment 30 days by T/T.										
Valid of the Quotation	ı	Februa	ry 29, 20	16.						
							Tokyo Mu	Denkai Co.,	Led. Ameze	we
							Hiroa	ki Umezawa,	CTO	

Technical specifications for the manufacturing of 5 high beta superconducting cavities at 704 MHz and beta = 0.86 equipped with their helium tank

- The HNOSS horizontal cryostat at Uppsala could host a high beta ESS elliptical cavity equipped with a power coupler and a tuner
- Uppsala will also have a 704 MHz klystron and a modulator to produce 1 MW RF power

- CEA is interested in such a collaboration opportunity and is open to discuss in order to not delay the CDR and the ESS schedule
- Additional cost should be assessed

3) COLLABORATIONS

SRF COLLABORATIONS FOR ELLIPTICAL CAVITIES

INTERFACE DOCUMENT AND DRAWINGS IN PREPARATION

- Cavity manufacturing drawings provided in June 2015
- Interface drawings: preliminary version sent the 30th of March 2016

7 sheets

- The full design of the medium and high beta cavities have been completed to be compliant with the ESS requirements and the state of art performances
- The two high beta early prototypes have been successfully tested in vertical cryostat and reached an accelerating gradient of 20 to 24 MV/m and a Q₀ above the specification of 5^e9
- The six medium beta prototype cavities for the M-ECCTD are being manufactured. Two of them have already been delivered. The first one tested in vertical cryostat showed a Q-disease maybe due to a high concentration of hydrogen. Heat treatment for H₂ degassing and a BCP with improved acid cooling should allow to mitigate this issue.
- > The fabrication of five high beta cavities for the H-ECCTD is being prepared
- A strong collaboration is being established for the production of the cavities of the series and a detailed interfaces documents are being settled

THANK YOU

ESS Cavity team:

CEA - IRFU: E. Cenni X. Hanus F. Peauger T. Hamelin G. Devanz N. Berton J. Plouin V. Hennion D. Roudier Ph. Hardy L. Maurice F. Leseigneur P. Carbonnier P. Bosland F. Eozenou O. Meunier C. Servouin

<u>Univ. Lund:</u> G. Constanza

<u>ESS:</u> C. Darve

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

 Consider state of the art performance of bulk Nb cavities with High Pressure water Rinsing (HPR)

 \checkmark XFEL specifications (Eacc= 23.6 MV/m, corresponding to

Epk = 47 MV/m, and Bpk = 100 mT) on series production
Minimum wall angle of 6 degrees with respect to the vertical direction to easier the cavity preparation (chemical etching, HPWR and drying) and the cavity mechanical behaviour (sensitivity to Lorentz Force Detuning (LFD))

• High cell-to-cell coupling factor κ to easier the even field distribution in the cavity (and peak surface fields), to increase the frequency mode separation (first passband) and to allow high order mode (HOM) propagation (because of high iris diameters)

- drawback: reduce the efficiency and require higher power source
- Automatic cavity shape generator (specially developed by G.
 Constanza for the MB cavity design) and electromagnetic simulation codes: SUPERFISH, COMSOL and ANSYS/HFSS

All modules can be operated above 23.6 MV/m !!

Cavity profile and field pattern at 704.4 MHz

r/Q for the first passband modes.

MORE HOMS...

	Cutoff frequencies (GHz)						
Diameter (mm)	TE11	TM01	TE21	TM11	TE01		
100	1.7585	2.2989	2.9268	3.6585	3.6585		
136	1.293	1.6903	2.1521	2.601	2.601		
140	1.2568	1.6420	2.0804	2.6132	2.6132		

MECHANICAL PARAMETERS

		Medium beta	High beta
Niobium thickness	mm	4	3.6
Cavity stiffner radius	mm	70	84
Tank thickness	mm	5	5
Lorentz Force Detuning coef. K _L fixed ends	Hz/(MV/m)²)	- 0.735	-0.36
Lorentz Force Detuning coef. K _L free ends	Hz/(MV/m) ²	-23.35	-8.9
Cavity stiffness	kN/mm	1.286	2.59
Tuning sensitivity ∆f/∆z	kHz/mm	214.8	197
max VM stress /1mm elongation	MPa		25
Pressure sensitivity K _P fixed ends	Hz/mbar	23.08	4,85
Pressure sensitivity K _P free ends	Hz/mbar	-364.94	-150
max VM stress /1bar fixed	MPa	30.6	12
max VM stress /1bar free	MPa	31.4	15

CAVITY HANDLING TOOLS

FIELD FLATNESS TUNING

Tuning sensitivity	Simulation	Measured
[kHz/mm]	197 43	190

CHEMICAL TREATMENT SET-UP

<u>BCP</u> Just modified Used only once and need to be improved

 \rightarrow Two independant installations compatible with 704 MHz cavities and one is qualified

EFFECT OF BCP

HOM IDENTIFICATION BY BEAD PULL MEASUREMENT

Good identification of the HOM but unsuccessful tests to reshape the cavities with the field flatness tool.


```
E LA RECHERCHE À L'INDUSTRIE
```

STATIC LORENTZ FORCE DETUNING MEASUREMENT

- Measured LFD coefficient: KL = -7.65 Hz/(MV/m)²
- Close to the calculated value of -8.9 Hz/(MV/m)² in free ends conditions