Medium Energy Beam Transport

Technical Advisory Committee April 7th 2016 Lund

bustinduy@essbilbao.org

Ibon Bustinduy

on behalf of ESS-Bilbao Team

Overview

- During 2013 the ESS linac cost was reevaluated, important modifications were introduced.
- Each MEBT is unique (Broken periodicity)
- The name of the game is **compromise** and **iteration**
- MEBT is designed primarily to match the RFQ output beam characteristics to the DTL input both transversally and longitudinally.
- Beam Instrumentation, Fast chopper, Scraping blades impose certain restrictions
- linac design that affectedMEBT IKC is composed of different Work Packages, this talk will only cover <u>WP3</u> (30% of the contribution), Strong Interfaces with RF, Beam Instrumentation, Vacuum, ICS.
- 36 people are <u>directly</u> involved in Bilbao the Contribution, +23 support staff.

WorkPackages

MEBT provides the required matching from RFQ to DTL. Is currently divided into different Work Package contributions.

Schedule

- Schedule is driven by **QUAD** and **BUNCHER**
- Each sub-component has a different life cycle: Conceptual Design, Detailed Design, Fabrication, Testing: Difficult to separate into one single CDR.
- MEBT PDR/CDR involves more than just WP3 (warm linac unit)
- Linac design that affected MEBT IKC is composed of different Work Packages: RF, Beam Instrumentation, Vacuum, and with ICS division.

Integration and Verification

- CHOPPER, QUAD, and BUNCHER pose many challenges, <u>rapid prototyping</u> strategy to get a successful product in 2018. These activities are aimed at addressing uncertainties in the ability of the design to satisfy the stated functional requirements:
 - Stage I: Conceptual Design (Interfaces with WP2, WP7, WP8, WP12)
 - ✓ Internal Review (verified by ESS)
 - Stage 2: Detail Design
 - \checkmark Review
 - Stage 3: Manufacturing
 - Stage 4: Assembly and tests
 - ✓ Review
 - Stage 5: Series Production

5

Team in Bilbao

I. Bustinduy	WU Leader / Accelerator Physics
JL. Muñoz, D. Fernandez, O. Gonzalez	ElectroMagnetic and Magnetic Design
F. Sordo, M. Magán, R. Vivanco, T. Mora, G. Bakedano	Thermo-mechanical design
P. Gonzalez, N. Garmendia, L. Muguira, T. Poggi, A. Kaftoosian, O. Gonzalez	RF System
I. Rueda, A. Zugazaga, A. Salas	Mechanical Design, Supporting Structure, Vacuum and Alignment
A. Vizcaíno, Z. Izaola, I. Ortega, S. Varnassari, C. Cruz, A. Megia, D. de Cos, Z. Izaola	Diagnostic System
I. Mazquiaran, A. Milla, A. Serrano, C. de la Cruz, J. Bilbao, X. Gonzalez, A. Serrano	Control System
G. Harper, X. Gonzalez, J. Bilbao	Power Systems
F. G-Toriello	Building & Infrastructures

6

Milestones

	Item	Date
Х	Quad & Buncher PDR	February 2016
Х	Mech. Layout Integration	March 2016
0	Maximum Beam Power Density allowed per area and time	April 2016
0	Proton Beam Instrumentation PDR	June 2016
0	MEBT CDR	December 2016
0	Buncher Vertical Integration	December 2016
0	Assembly Stage #1 (BILBAO) starts	September 2017
0	Assembly Stage #2 (RATS) starts	May 2018
0	Assembly Stage #3 (TUNNEL) starts	June 2018

Assembly Stages

	Stage Description	Date	Location
0	Assembly Stage #1 Mechanical assembly of most systems in top of the supporting structure. Vacuum test of each component and assembly Verification of all parts and interfaces EEE Integration	September 2017	BILBAO
0	Assembly Stage #2 Verification of all parts	May 2018	RATS
0	Assembly Stage #3 Reassembly and final alignment	June 2018	TUNNEL

EUROPEAN

SOURCE

Mechanical Integration

- Deeply entangled problem.
- The adoption of a project mentality was the key.
- Three stage problem: Optical elements first. Assembly and alignment strategy agreed. Then, beam instrumentation.
- Each system has an space budget to finalise detailed design.

Mechanical Integration

- This milestone <u>unlocks</u>:
 - Support Frame.
 - Assembly and Alignment strategy refinement
 - Diagnostics (FC, BPM, EMU, WS, CT) and corresponding boxes detail design.
 - Chopper Beam Dump finalisation.
 - Chopper Vessel
 - Vacuum simulations refinement.

QUAD

- MEBT needs of 11 Quadrupoles for focusing and steering the beam.
- The magnet series from a unique design to generate the required quadrupole and dipole fields.
- A full magnetic design developed to generate the maximum quadrupole fields plus 10% contingency.
- The magnetic design calculated with ROXIE and COMSOL software throughout a combination of 2D and 3D simulations.
- Design deeply correlated to embedded BPMs.
- Dismountable in 2/4 parts
- PDR held in Feb.2016 (<u>https://indico.esss.lu.se/</u> event/503/)
- Call for tender in progress

ibon.bustinduy@essbilbao.org

QUAD

BPM

•**Stripline** type with electrode length of less than 40 mm

•BPMs will be installed inside quadrupoles

•They are based on 50Ω matched transmission lines with shorted ends

•Functional in both **352.2** & **704.4 MHz**

•All the materials and components used in the BPM structure are non-magnetic in order not to affect the quadrupole field

BUNCHER

- Layout: Optical design & engineering design.
- For an EoTL≈150kV, get higher ZT² with compromise.
- Best diameter and location for the tuners.
- Efficient cooling circuit (max temp. in the "nose cone" is ~194°C).
- Power coupler to hold ~22.5kW peak power.
- I90mm max. length. I36 mm cavity width (vacuum)
- Room-temperature copper, bulk resistivity of 1.7241 μΩ-cm.
- Different parametric studies: SUPERFISH (2D), COMSOL (3D), HFSS (3D)
- Prototype designed, manufactured, measured (metrology & RF), and characterised by bead pull.

13

BUNCHER Integration

- BUNCHER constitutes the best system to test the validity of the complete vertical system, naming convention, etc..
- **CT01** It contains: **RF01** • LLRF SSPA RF Coupler • RF Fixed Mobile Power Tuner Tuner DC01 LLRF Buncher Vacuum **RF02** Vacuum Power Cavity Pump **RF** Pickup AC01 Water cooling **CT02** Controls Alignment • Power Gauge **CT03** Interlocks (slow and fast)

BUNCHER Interfaces

Interfaces

A: DN63 CF – Ion Pump B: DN63 CF – Tuner C: DN63 CF – Coupler D: DN63 CF – Tuner E: DN40 CF – Pick Up F: DN40 CF – Gauge G: Support

x: DN40 CF – Beam Pipe y: Body (Helicoflex seal groove) z: Cover (Helicoflex seal flat surface)

- All DN CF Flanges according to ISO/TS3669-2 Vacuum technology—Bakable flanges —Part 2: Dimensions of knife-edge flanges
- All pipes on DN CF Flanges according to ISO 9803-1 Vacuum technology Mounting dimensions of pipeline fittings — Part 1: Non knife-edge flange type

BUNCHER

Time	ESS-Bilbao	ESS		
80 days		- EEE workflow ready		
142 days		 (ICS) RF ready (WP8) LLRF ready (WP8) VAC ready (WP12) WTRC systems (sensors, etc) ready. 		
	 Integration in EEE of BU (WTRC, VAC, etc.) Infrastructures ready Implementation of local MPS Implementation of local PPS 			
161 days	Jan 2017			
	 VAC, WTRC, Metrol. Low Power RF Interlock tests High Power RF 			
	80 days 142 days 142 days 161 days	Time ESS-Bilbao 80 days - 142 days - 142 days - - -		

VACUUM

EUROPEAN SPALLATION

SOURCE

Diagnostics

Beam Stoppers

Problem Description

- From the **transient state** calculations, one can infer that this model has to be discarded given the combination of **high power** distributed in a **very concentrated** beam size and a **swallow deposition surface**.
- Please note that current and energy combination result in a 230 kW peak power which exceeds other MEBTs, SNS peak power 130 kW, LINAC4, RAL, JPARC (~180 kW).
- A limit of proton beam power density per unit of time and area allowed should be identified. This is crucial in order to ensure thermo-mechanical integrity of different interceptive devices along the MEBT.
- I (mA) x W(MeV) x pulse length (µs) x $\sigma_{(x,y)}$ (mm^2)

Chopper

- Chopper workshop held in Bilbao Jan-2015 with a world-wide experts panel selection. (<u>https://indico03.esss.lu.se/indico/event/285/</u>)
- Strip-line approach $\Delta V \sim 5kV$; 450mm; ø20mm; 10ns rise-time; 20µs steady

Deflector: Strip-line

- The design is based on fast transmission line strips, which the perpendicular electromagnetic fields will deflect the beam in the vertical position.
- The strip-line is designed to match with 50 ohm termination loads, therefore removing the voltage reflections and maximising the power transfer.
- The strip-lines have matched input ports from pulser and matched output ports to the load.
- Chopper Strip-line is based on fast transmission line scheme with overall rise time less than 10 ns and maximum differential voltage of 5 kV.

Deflector: Stripline

Deflector Type	TEM Stripline
Beam energy	3.62 MeV
SL Gap	20 mm
Deflection angle	13.84 mrad
Deflector length	450 mm
Deflecting voltage	±2250 V
Characteristic impedance	50 Ω
Good field region	±15mm
E flatness in GFR	5%

Pulser

In-factory acceptance test stage, Many tests performed, including effects of employed load, jitter, cable length, etc. Overall, performance is promising, still a few adjustments need to be done in factory before shipping to Bilbao.

Dates

Finished

Strip-line Detailed Mechanical Design

The positive polarity pulser prototype was launched in 2015.

In process

Strip-line Manufacturing

Detail design of strip-line vacuum vessel

Pulser factory acceptance test. The first phase of the tests have been realised in February 2016. Results are promising.

Future Steps

May 2016 final phase of factory tests

September 2016 The components delivered to ESS-Bilbao, acceptance tests performed.

November 2016 Assembly and measurements with and without pulser

Name	Duration	Start		14	2015	2016	2017	20	018	
	Duration	Start		Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 (Q4 Q1 Q2 (Q3 Q4 Q	1 Q2	Q
BCHOPPER	1,250.37	9/4/14	6/			 				
Chopper Specifications and technology	95 days?	9/4/14	1/		G-CHOPPER-	÷##2				
Chopper Eng. design	170 days	3/16/1	11		۲ <u>ا</u>	CHICPPER				
Beam dump Detailed design	170 days?	3/22/1	11				СНОРРЕ	R		
Chopper PoP	100 days?	12/2/1	4/			снов	FER			
Chopper PoP Lab Tests	100 days?	4/20/1	9/				OPPER			
Chopper & Beam Dump	160 days?	11/15/	6/					СНОРРЕ	F	
Beam Dump tests	100 days?	6/27/1	11					C	IOPA	ER
Pulser Tests	120 days?	6/27/1	12						HOR	PEI
Chopper & Beam Dump Tests	30 days?	5/10/1	6/							
					-					

Overall

- **Mechanical integration Layout** has been agreed in a collaboration spirit.
- It is highly advisable to start all the preparations on the buncher as a complete vertical system. ICS will play a vital role.
- Future key activities:
 - Proton Beam Instrumentation Preliminary Design Review (June 2016).
 - MEBT Critical Design Review (Dec 2016)
 - Buncher machining and copper plating follow up.
 - Buncher integration (Vacuum, RF, LLRF, MPS, PPS)
 - Quad call for tender and follow up.

