

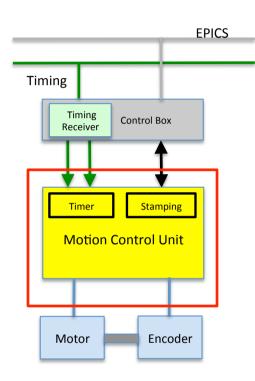
EUROPEAN SPALLATION SOURCE

Feedback - Motion Control and Automation -

Thomas Gahl (ESS) Guido Vehres (JCNS)

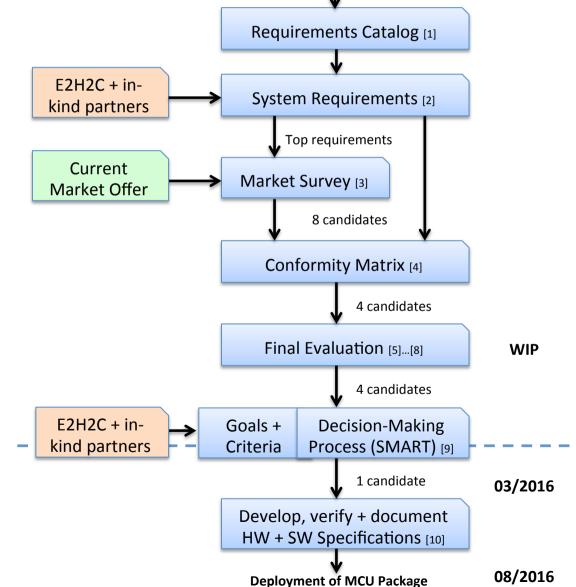
www.europeanspallationsource.se February 18, 2016

Update on MCA Initiatives


1 Evaluation for Generic Motion Control Unit in final stage

- Decision process
- Requirements
- Market survey
- Candidates
- Decision criteria
- First results
- Next Steps
- 2 Start on identifying radiation hard components

MCA Standard: Generic Motion Control Unit


- Standardised Motion Control Unit for most of the ESS applications
- Scope of standardisation:
 - Control Hardware (controller, driver, I/O, power supply, control panel etc.)
 - Control Software (controller firmware, EPICS IOC)
 - Cables, connectors, distribution boxes, field busses
 - Prototypes for different mechanical and electrical format factors (19"box, DIN-rail, 8-axes, 2-axes etc.)
 - Test environments (Control unit + EPICS)
 - Integration workflow
- Workshop April 2016
- Deployment of fully tested system August 2016

<u>Responsibilities</u> Technology: MCA Integration: MCA/ICS

Decision making process: Status now

Associated Documents

)16		4
)16	[10]	MCU Specification Document
	[9]	Decision-Making Report
P	[5] [8]	Evaluation Reports 1 to 4
	[4]	Conformity Matrix of MCU's
	[3]	Market Survey Report
	[2]	MCU System Requirements List
	[1]	MCU Requirements Catalog

MCU requirements catalog

EUROPEAN SPALLATION SOURCE

- Standard positioning requirements
- Synchronisation of internal clocks with ESS timing system
- Decentralisation through field bus with real-time capabilities and synchronisation
- Multi-axes synchronisation
- Free configurable trajectories
- Modular and scalable (in terms of performance and price)
- Short intervention time (ACC): Diagnostics (preemptive maintenance)
- Short intervention time (ACC): Firmware and parameter management
- Multiple HW platforms (ICS): Open source controller
- Stepper motors, DC brushless, piezo
- Encoder inc. quad., abs. SSI, resolver, (analog), (BiSS-C)

Decision criteria

- 1 Performance against functional requirements
- 2 Performance against non-functional requirements
- 3 Wide used and popularity (ESS, in-kind partner, industry)
- 4 Installation
- 5 Maintenance
- 6 Compatibility (to ESS integration)
- 7 Costs (1ax, 8ax, 32ax)
- 8 Supplier assessment (competence, support, availability to partner, lifetime/obsolescence management)
- 9 Second-Source / Open-Source assessment
- 10 Flexibility / Modularity (design, maintenance, extensions)

4 Final Candidates

7

First results

	Delta Tau	IcePap	Beckhoff	Siemens
Functional				
non-functional				
Popularity				
Installation				
Maintenance				
Compatibility				
Cost				
Supplier				
2nd source				
Modularity				

Next steps (1)

- Finalise evaluation documents
- Open call-for-tender
- Decision for supplier
- Motion Control Workshop (doodle poll)
 - EMI, cables, connectors
 - Zoning concept (detector group, sample env group)
- Finalise hardware +EPICS integration
- Develop deployment package (Hard- and Software)
- Issue Standard Documents, Manuals etc.
- Distribute templates to partners
- Extend Motion Control Components Standard

EUROPEAN SPALLATION SOURCE

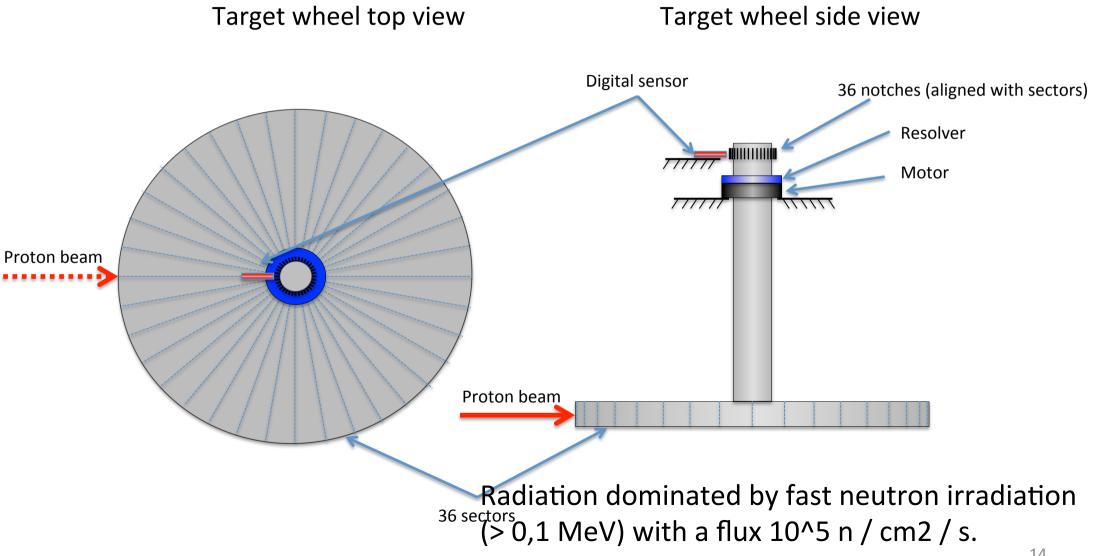
Feedback - Radiation Environment -

Thomas Gahl (ESS) Guido Vehres (JCNS)

www.europeanspallationsource.se February 18, 2016

- Define critical (bunker, cave) and non critical areas (hall)
- Avoid electronics and optics (made of plastics) in critical areas
- Use supplier certification wherever appropriated (reactor technologies)
- Gamma/thermal neutrons: Compare to reactor applications
- Fast neutrons: Use experience from CERN and ITER project

Components

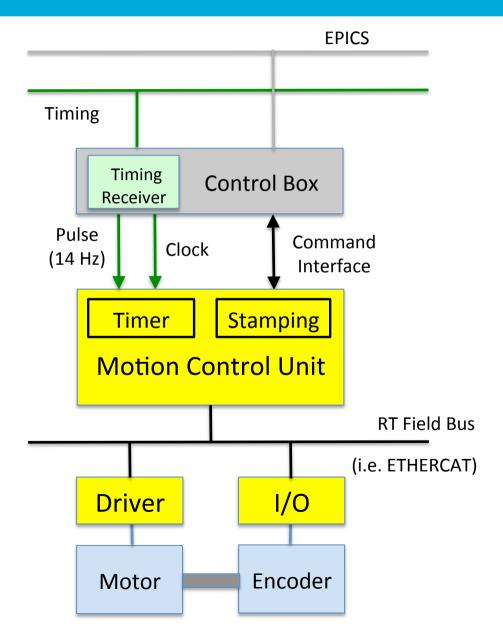

- Motors
 - Radhard stepper motors (PHYTRON, Empire Magnetics)
 - Radhard BLDC motors (Wittenstein)
 - Other companies
- Encoders
 - Resolver
 - LVDC
- Switches
 - Radhard Hall sensors
 - Optical sensors with fiber
 - Inductive (with separated elctronics)
 - capacitive

- Radiation hard solution
- Phase accuracy +-2mm on circumference (diameter 2.5m)
- Park position accuracy = +-2mm
- Nominal speed = 14/36 ≈0.39Hz
- Startup time (0-0.39Hz +phasing) = 20 minutes
- More requirements in CHESS...

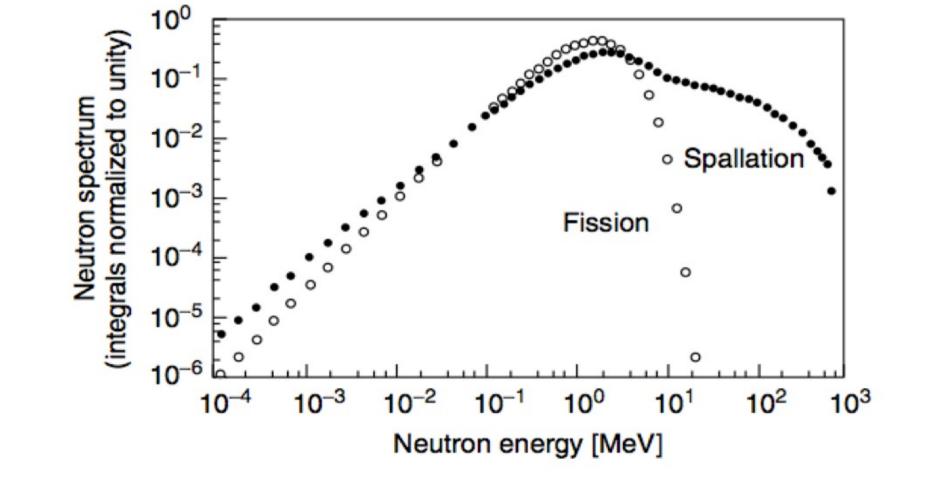
Concept Overview

Questions?

EUROPEAN SPALLATION SOURCE


Feedback Extras - Motion Control and Automation -

Thomas Gahl (ESS) Guido Vehres (JCNS)


www.europeanspallationsource.se February 18, 2016

Motion Control Concept

- Transfer absolute timing information from Control Box to the local HW control unit:
- Synchronise a timer on the control unit
- Timestamp in the control unit direct readings of the sensor with minimal latencies
- Transfer the sensor readings through the Control Box into EPICS
- Synchronously vs. asynchronously
- Local distribution of control unit functionalities with real time field busses

Spectrum reactor vs. spallation

Synergies / comparison

- Motion control components in bunker
- Chopper components
- Target wheel control

	Gamma	Thermal n	Fast n
ILL	10 ⁻¹	1	10 ⁻⁵
ESS	1	1	1
Space			10
CERN			10
ITER			10 ³

Update on MCA Initiatives

1 Evaluation for Generic Motion Control Unit in final stage

- Decision process
- Requirements
- Market survey
- Candidates
- Decision criteria
- First results
- Next Steps
- 2 Start on identifying radiation hard components
- 3 Motion Control Components Standard issued (ESS-0037290)
- 4 Guidelines for MCA in Phase 1 issued (ESS-0049514 draft)