

EUROPEAN SPALLATION SOURCE

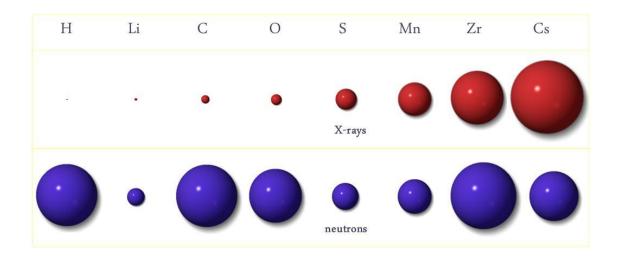
Introduction to the European Spallation Source Linac

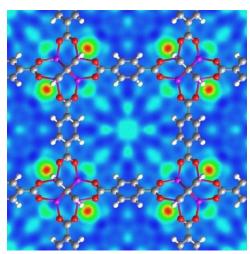
Dave McGinnis Accelerator Division 8-December-2015

www.europeanspallationsource.se

Overview

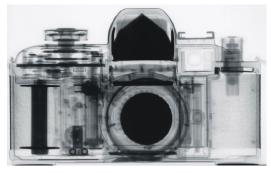
- The European Spallation Source (ESS) will house the most powerful proton linac ever built.
 - The average beam power will be 5 MW which is five times greater than SNS.
 - The peak beam power will be 125 MW which is over seven times greater than SNS
- The linac will require over 150 individual high power RF sources
 - Based on high power electron tubes
 - with 80% of the RF power sources
 - requiring over 1.1 MW of peak RF power at a 4 % duty factor
 - We expect to spend over 200 M ${\rm f}$ on the RF system alone




- ESS is a neutron spallation source for neutron scattering measurements.
- Neutron scattering offers a complementary view of matter
 - in comparison to other probes such as x-rays from synchrotron light sources.
 - The scattering cross section of many elements can be much larger for neutrons than for photons.

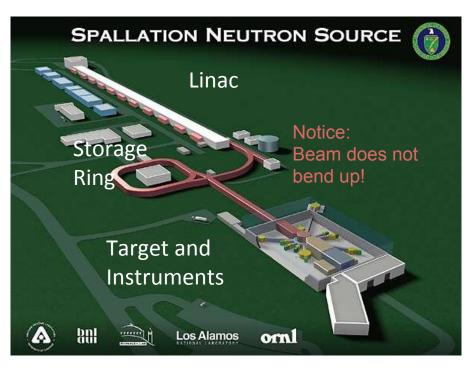
Neutron Scattering

- Neutron scattering can reveal the molecular and magnetic structure and behavior of materials, such as:
 - Structural biology and biotechnology, magnetism and superconductivity, chemical and engineering materials, nanotechnology, complex fluids, and others

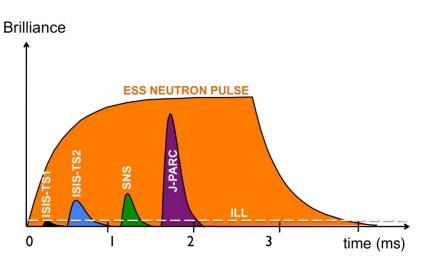

Neutron scattering of hydrogen in a metal organic framework

Neutron radiograph of a flower corsage

X-Ray Image


Neutron radiograph

Neutron Spallation Sources


- Traditional neutron sources are reactor based
 - Neutron flux is limited by reactor cooling
 - Neutron energy spectrum is measured by time of flight using neutron choppers
 - Chopping throws away neutrons and limits neutron brightness
- Spallation sources consist of a:
 - pulsed accelerator that shoots protons into:
 - a metal target to produce the neutrons
- The pulsed nature of the accelerator makes the neutron brightness
 - much higher for a spallation source
 - for the same average neutron flux as a reactor

- The accelerator complex of a typical spallation sources consist of a:
 - Linac to accelerator the protons
 - A storage ring to compress the linac beam pulse

What is Different About ESS?

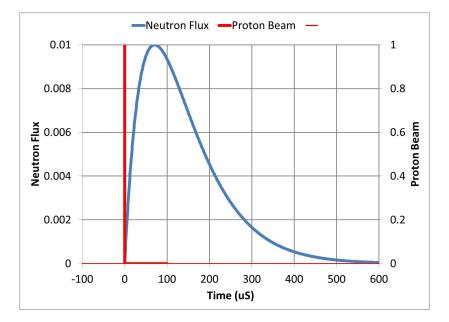
- The average proton beam power will be 5 MW
 - Average neutron flux is proportional to average beam power
 - 5 MW is five times greater than SNS beam power
- The total proton energy per pulse will be 360 kJ
 - Beam brightness (neutrons per pulse) is
 proportional to total proton energy per pulse
 - 360 kJ is over 20 times greater than SNS total proton energy per pulse

EUROPEAN

SOURCE

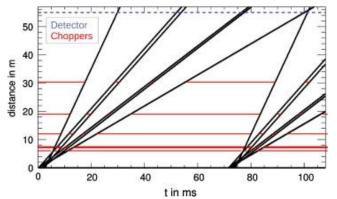
What is 5 MegaWatts?

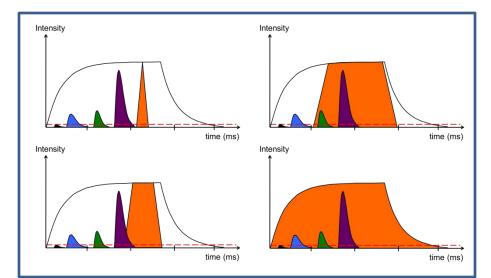
- At 5 MegaWatts,
 - one beam pulse
 - has the same energy as a 16 lb (7.2kg) shot traveling at
 - 1100 km/hour
 - Mach 0.93
 - Has the same energy as a 1000 kg car traveling at 96 km/hour
 - Happens 14 x per second
 - You boil 1000 kg of ice in 83 seconds
 - A ton of tea!!!

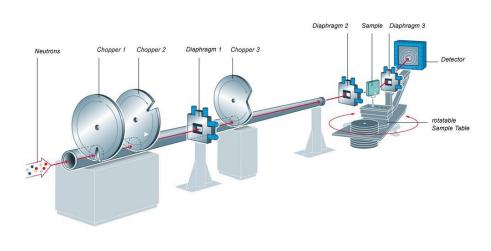


Short Pulse Neutron Spallation Sources

- The neutrons are cooled by a moderator downstream of the target
- The time constant of the moderation process is about 100 μs
- Proton beam pulses shorter than 100 us serve only to stress the metal target and limit the beam power
 - Typical short pulse spallation sources have storage ring circumferences ~300 meters which produce 1 μs beam pulses
 - To build a storage ring with a 100 µs pulse would require a ring 30 km in circumference

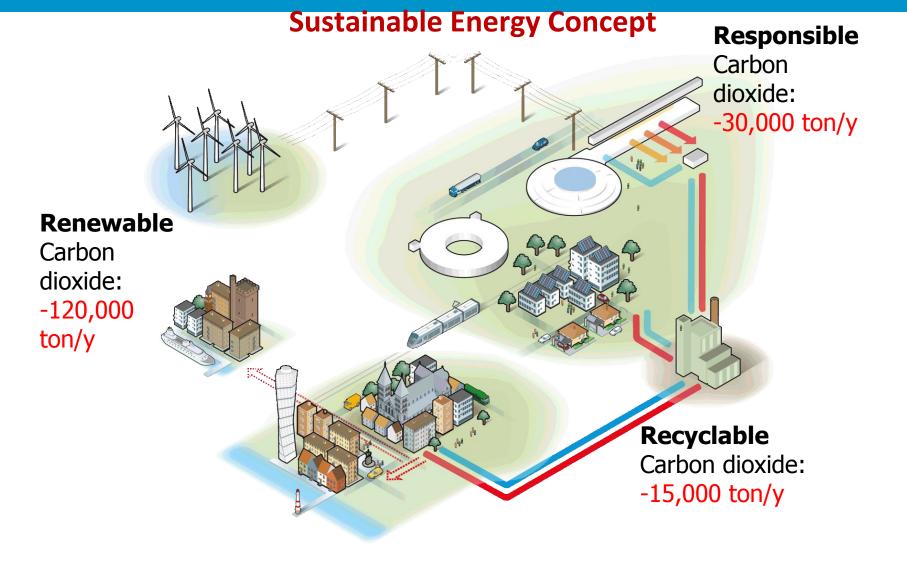



- The target stress from the short beam pulse places a limit on:
 - proton beam power
 - and ultimately neutron flux and brightness
 - The proton beam power of SNS (Oak Ridge Tennessee, USA) is limited to 1MW (17 MW peak)

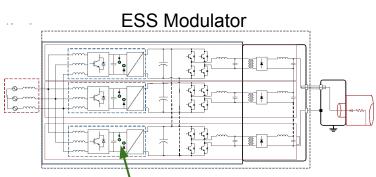


Long Pulse Concept

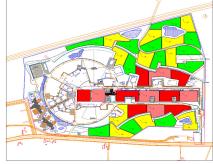
- 360 kJ packed into a short pulse of 1 μs (360 GW peak) would destroy a target
- ESS will not use a compressor ring
 - The linac will send the beam directly to the target over a period of 3 ms at a rate of 14 Hz.
 - Peak beam power on the target is less than 125 MW
- The tradeoff is that ESS will
 - Have longer neutron guides between experiments and the target
 - Require a neutron choppers for precision energy measurements

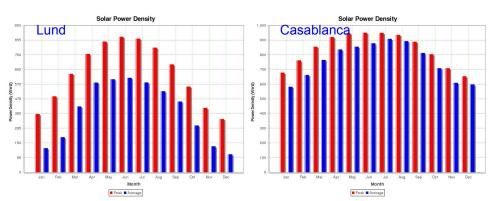


What is Different About ESS?


ESS Solar Potential

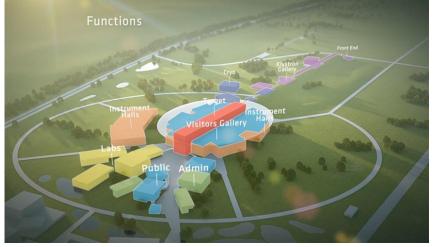
(Warning! Not approved! Preliminary! Read at your own Risk!)

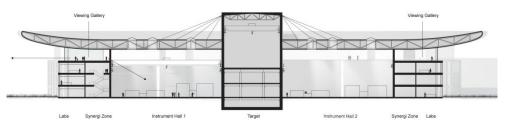

LUNDS UNIVERSITET Lunds Tekniska Högskola

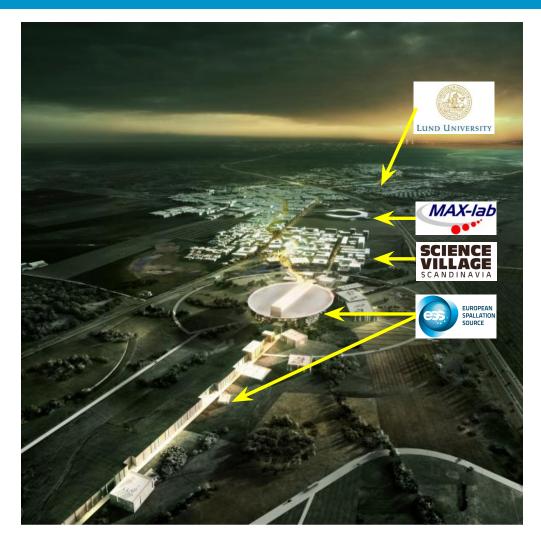

EUROPEAN SPALLATIOI SOURCE

- The solar energy potential of ESS site is comparable to many of the large scale solar fields found in Europe.
 - Over half of the ESS site has the potential to be used as a solar field.
- Using active front end technology, a 26 hectare (¹/₃ of the ESS site) photovoltaic facility can be directly connected into the heart the ESS linear accelerator power convertors to
 - produce a peak electrical power of 23 MW at a yearly average power generation of 30 GW-hr. (*This is enough energy to more than* offset the amount of energy supplied to the ESS proton beam)
- Collection of thermal energy from photovoltaic array
 - Could potentially yield 20.7 MW-years (180 GWh) at 80C (over 5x the amount of heat planned to be recycled from the ESS linac)
 - Could potentially provide a daily average of 8.8 MW-day (211 MWh)for the months from October through March.

Solar Array Connection




What Will ESS Look Like?



Where Will ESS Be Built?

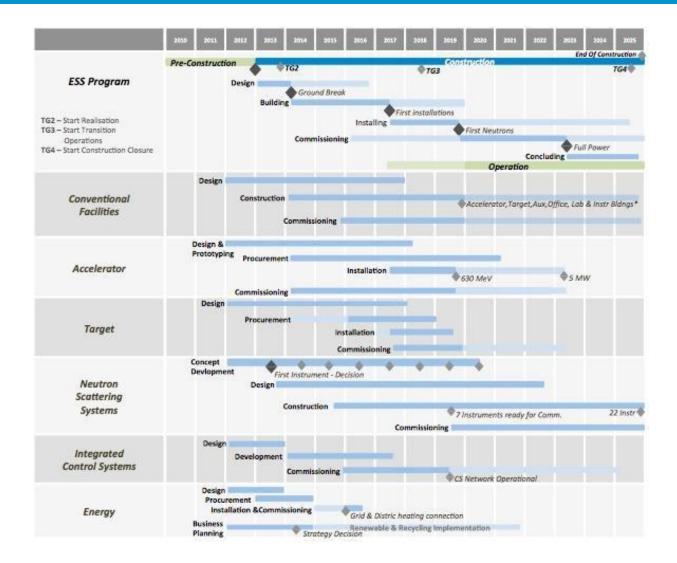
- ESS is located in southern
 Sweden adjacent to MAX-IV (A 4th generation light source)
- To provide a world-class material research center for Europe

How Much Will ESS Cost?

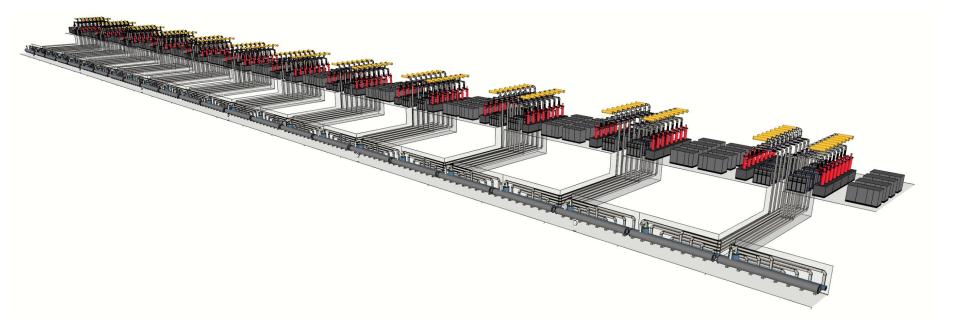
How Will ESS be Funded?

EUROPEAN SPALLATION SOURCE

Sweden, Denmark and Norway covers 50% of cost


The remaining ESS members states covers the rest!

with in-kind and cash contributions.



How Long Will ESS Take to Build?

EUROPEAN SPALLATION SOURCE

ESS LINAC

Top Level Requirements

EUROPEAN SPALLATION

SOURCE

- 5 MW of average beam power
- Pulse repetition rate of 14 Hz
 - driven by neutron chopper constraints
- Pulse length of 3 ms
 - Driven by instrument location
 - And beam brightness
- Gives:
 - Peak beam power of 125 MW
 - 4% duty factor

Redesign Phase

- ESS Redesigned the Accelerator in 2013
 - reduce cost without reducing scope.
 - By adding more technical risk
- Major redesign changes
 - Energy Reduction: 2.5 GeV -> 2.0 GeV
 - Gradient increase by 10%
 - 33% fewer 704 MHz cryomodules and RF systems
 - Beam Current Increase: 50 mA -> 62.5 mA

New Baseline

EUROPEAN SPALLATION SOURCE

New Baseline Headline Parameters

- 5 MW Linac
 - 2.0 GeV Energy (30 elliptical cryomodules)
 - 62.5 mA beam current
 - 4% duty factor (2.86 mS pulse length, 14 Hz)
- First beam by 2019 (1.0 MW at 570 MeV)

• The new baseline was achieved by:

- Increasing beam current by 25%
- Increasing Peak Surface Field by 12%
- Setting High Beta β_g to 0.86
- Adopting maximum voltage profile
- Adopting a uniform lattice cell length in the elliptical section to permit
 - design flexibility
 - schedule flexibility.

Design Risk

- Reduced the number of elliptical cryomodules from 45 to 30
 - − Each cryomodule + RF to power the cryomodule costs ~6.5 M€
 - Elimination of 15 cryomodules yields 78 M€ savings (6.5 M€ x 15 x 80% (power factor))

• By accepting large technical risk

- Power Couplers:
 - Maximum coupler power is 1200 kW
 - Went from 850 kW/coupler to 1100 kW/coupler
 - Reduced our design margin by 70%
- Cavity Peak Surface Field
 - Maximum surface field is 50 MV/meter
 - Went from 40 MV/meter to 45 MV/meter
 - Reduced our design margin by 50%

Design Contingency

EUROPEAN SPALLATION SOURCE

• ESS uses the Long Pulse concept

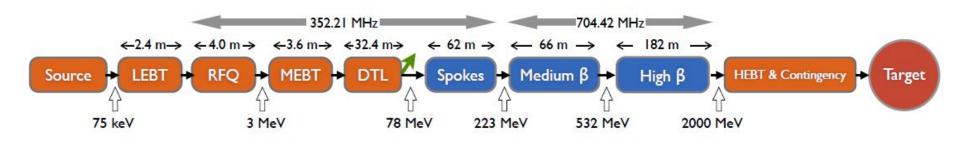
- No compressor ring is required
- Peak beam current can be supplied at almost any energy

• If we fail to meet our goals on:

- Beam current
- Cavity gradient
- Power coupler power
- The accelerator complex will still function but at a reduced beam power
- We can buy back the beam power in the future by adding high beta cryomodules to the end of the linac
 - As long as the additional space is reserved.
- We proposed to mitigate these risks by reserving the tunnel space for 15 cryomodules (127.5 meters) as "design contingency".

Linac Design Choices

- The energy of the linac is a tradeoff of
 - Linac length
 - Beam current:
 - Space charge forces
 - Halo losses
- Copper Linac
 - Low construction costs but high operational costs
 - Small bore radius < 3 cm
 - Long linac > 750 meters for 2 GeV
- Superconducting Linac
 - High construction costs but low operational costs
 - Large bore radius > 7 cm
 - Short Linac < 360 meters for 2 GeV

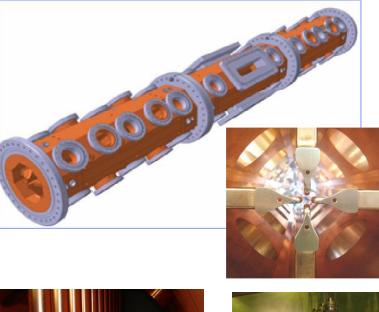


Linac Design Choices

- User facilities demand high availability (>95%)
- ESS will limit the peak beam current below 65 mA
- Linac Energy > 2 GeV to accomplish 125 MW peak power.
- The linac will be mostly (>97%) superconducting
- Front end frequency is 352 MHz (CERN Standard)
- High energy section is at 704 MHz

Accelerator Collaboration

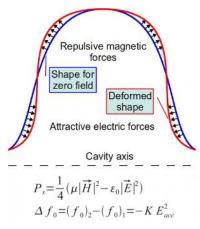
- Ion source : Istituto Nazionale di Fisica Nucleare (INFN) Catania, Italy
- Radio Frequency Quadrupole (RFQ): Commissariat à l'énergie atomique (CEA) Saclay, France
- Medium Energy Beam Transport (MEBT): ESS-Bilbao, Spain
- Drift tube Linac (DTL): Istituto Nazionale di Fisica Nucleare (INFN) – Legnaro, Italy
- Spoke cavities: Institut de Physique Nucléaire (CNRS) Orsay, France
- Elliptical cavities: Commissariat à l'énergie atomique (CEA)
 Saclay, France
- High Energy Beam Transport: Aarhus University, Denmark
- Spoke RF sources: Uppsala University, Sweden
- RF regulation: Lund University, Sweden

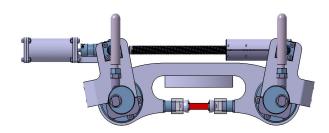

EUROPEAN SPALLATION

SOURCE

Front End Section

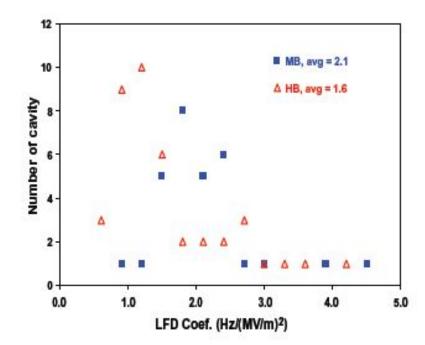
- The RFQ and DTL will be similar to the CERN Linac 4 design.
- The RFQ
 - will be 4.5 meters long
 - and reach an energy of 3.6 MeV
- The DTL
 - Will consist of five tanks
 - Each tank ~7.5 meters in length
 - Final energy will be 88 MeV
- Six klystrons
 - at 352 MHz
 - with a maximum saturated power of 2.8 MW
 - and a duty factor of 4% are required for the Front End


Superconducting RF


- Over 97% of the ESS linac will be superconducting cavities.
- Compared to copper cavities, superconducting cavities can offer:
 - over three times the gradient
 - over 10 times the aperture
 - with virtually no power dissipated in the cavities

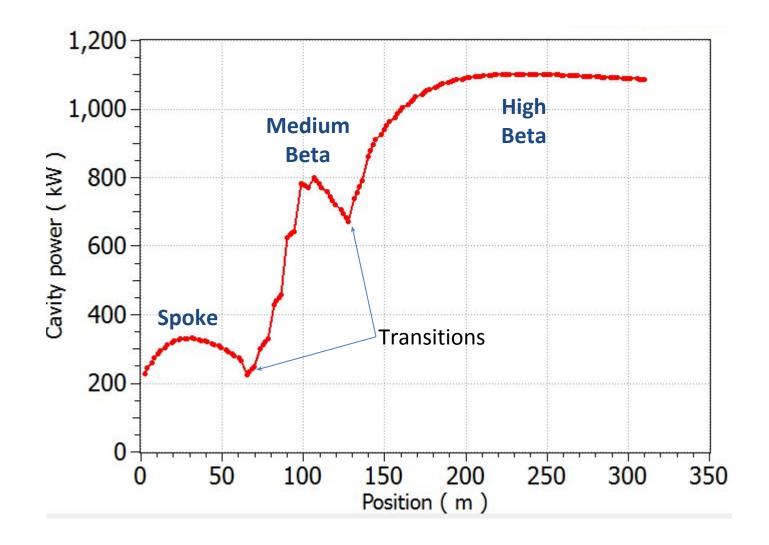
Lorentz De-tuning

- Because of the enormous gradients in superconducting cavities,
 - the radiation pressure deforms the cavities
- We expect over 400 Hz of detuning in the ESS cavities.
 - Unloaded cavity bandwidth = 0.07 Hz
 - Loaded cavity bandwidth = 1 kHz
- The mechanical time constant of the cavities is about 1 ms compared to the pulse length of 3 ms
 - Static pre-detuning as done in SNS will not be sufficient
 - Dynamic de-tuning compensation using piezoelectric tuners is a must!
 - Or else pay for the extra RF power required



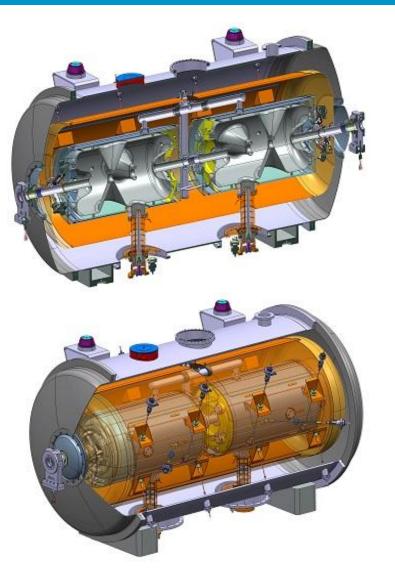
Cavity Power Configuration

- Because of fabrication techniques,
 - superconducting cavity strings are usually much shorter (< 1 m) than copper cavity strings (> 5m).
 - The Lorentz de-tuning coefficient varies from cavity to cavity
- Therefore, each superconducting cavity has its own RF power source


Transit Time Factor

- For proton linacs using copper RF cavities
 - the cavity cell structure is tuned to match the changing proton velocity as it accelerates.
 - The power profile is usually flat
- Because of high fabrication costs and difficulty,
 - The cell structure of superconducting cavities is tuned for only one beam velocity.
 - Multiple families of cell velocities are chosen. ESS cell velocities:
 - Spoke: $\beta_g = 0.5$
 - Medium beta: $\beta_g = 0.67$
 - High beta: $\beta_g = = 0.86$
 - There is a limit on the surface field in a SCRF cavity (ESS 45 MV/m)
 - Since, the particle velocity does not match the geometrical velocity for the entire acceleration range,
 - The power profile is not flat

ESS Linac Cavity Power Profile



Spoke Cavities

- ESS will transition to superconducting cavities at 88 MeV
- ESS will be the first accelerator to use 352 MHz double spoke cavity resonators
- Twenty-eight cavities with an accelerating gradient of 8 MV/m are required.
- Each cavity will operate at a nominal peak power of 320 kW
- What type of power source to choose?
 - Tetrode
 - Klystron
 - IOT
 - Solid State

Spoke linac (352 MHz) Layout

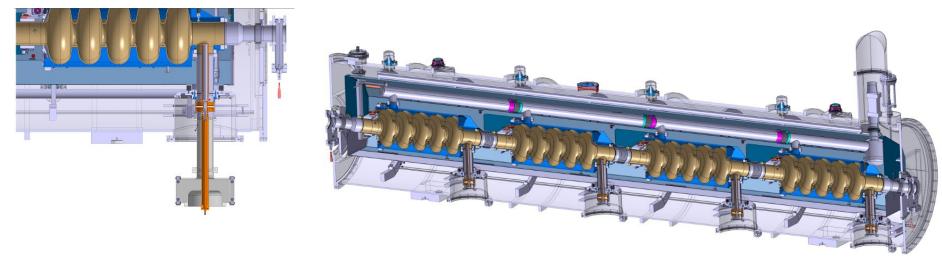
EUROPEAN SPALLATION SOURCE

26 Double Spoke cavities Power range 280-330 kW Combination of two tetrodes

> Other options: Solid State Amplifiers

Large power supply (330 kVA) to supply 8 stations (16 tetrodes)

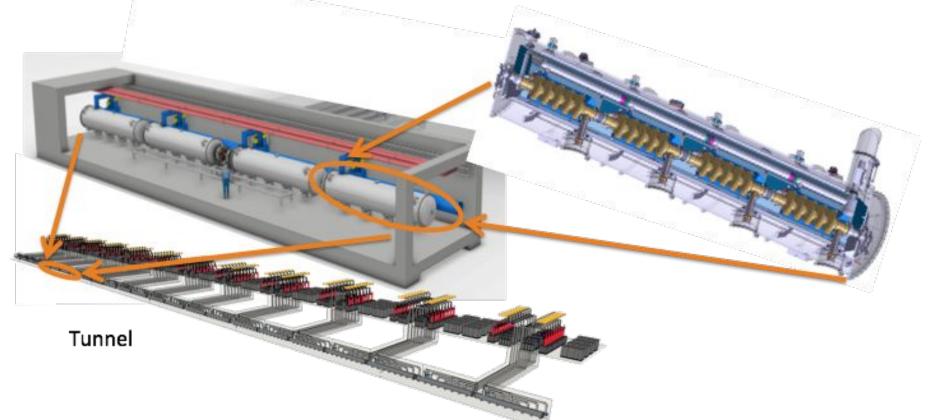
Elliptical Cavities



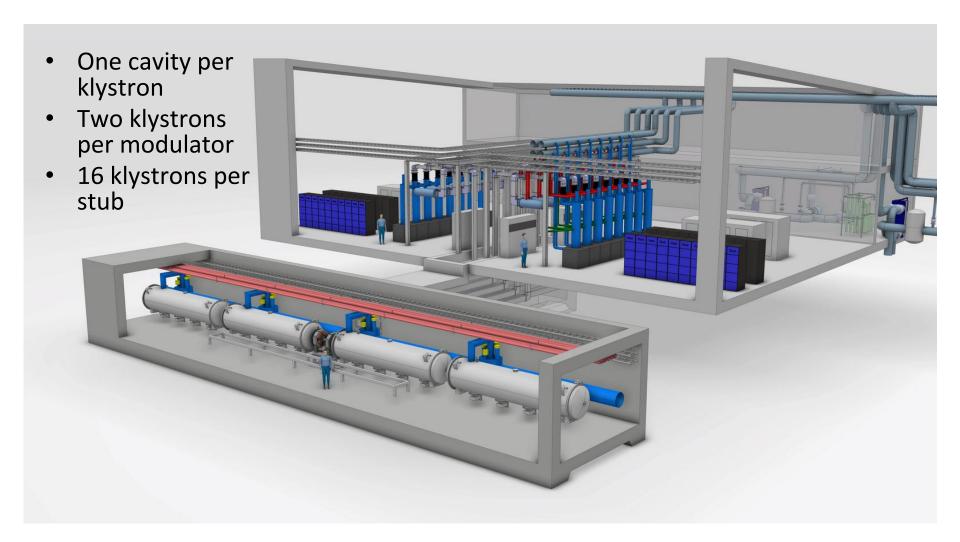
- Universal Cryomodule
 - Cryomodules are expensive and difficult to fabricate
 - Pick cavity β_g and number of cells \bullet Optimize power transfer

 - Optimize length
 - Power in couplers is limited to 1200 MW (peak)

- Medium Beta $\beta_g = 0.67$ 6 cell cavities

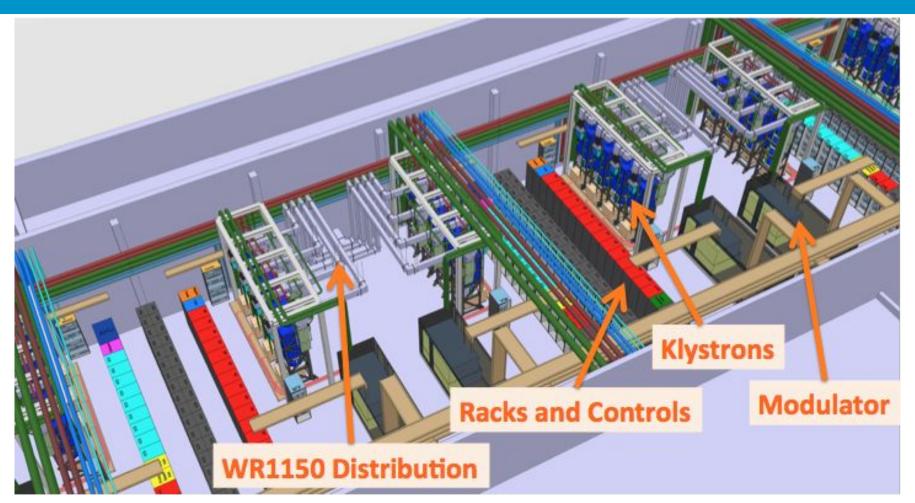

 - Cavity length = 0.86 m
 - 32 cavities packaged in 8 cryomodules
 - Maximum peak RF power = 800kW
- High Beta $\beta_{\sigma} = = 0.86$
 - 5 cell cavities
 - Cavity length = 0.92 m
 - 88 cavities packaged in 22 cryomodules
 - Maximum peak RF power = 1100kW

Elliptical (704 MHz) Layout



- One cavity per klystron
- 4 klystrons per modulator
- 16 klystrons per tunnel penetration

Elliptical RF System Layout



Elliptical (704 MHz) Gallery Layout

EUROPEAN SPALLATION SOURCE

4.5 Cells of 8 klystrons for Medium Beta 10,5 Cells of 8 klystrons (IOTs) for High Beta

EUROPEAN SPALLATION SOURCE

AD Engineering Resource Group Views on Machine Protection

www.europeanspallationsource.se

Machine Protection Philosophy

- The Accelerator MPS must protect against
 - Damage to the Accelerator
 - Damage to other ESS Systems (Target, CF, ..)
- To protect against other systems, AD will receive requirements from the Machine Protection Committee (MPC)
 - Speed of protection
 - Protection interfaces
 - Best practices
- AD has a membership in the MPC and AD will participate in risk analysis that will aid in the formulation of machine protection requirements
- AD will have a two-tier system for active machine protection
 - Beam Permit System (BPS) also known as Software Interlock System (SIS)
 - Beam Abort System (BAS) also known as Beam Interlock System (BIS)

Beam Permit System

EUROPEAN

SOURCE

- Decision to inject made prior to the beam pulse
- Relatively slow system (> 10ms)
- Should catch 96 % of the failures
- The sensors to the BPS will be the local protection systems (LPS)
 - Mostly every energy source (or power convertor) in the Accelerator will have a local protection system (LPS).
 - The purpose of the LPS is to protect the power source and the load attached to the power source
 - The LPS will be specified (and it most cases designed and built) by AD
 - Using a platform approved by ICS (i.e. approved PLC's or crates that interface to EPICs)
 - The LPS will report status to the high level control system (EPICs)
- The controller of the BPS will be high level control system (EPICS)
- The controller of the BPS will be configurable
 - masks
 - states

Beam Abort System

EUROPEAN SPALLATION SOURCE

- The purpose of the Beam Abort System is stop injecting beam into the accelerator if an accident is happening or about to happen
 - Decision to abort made during beam pulse
 - Relatively fast system (< 0.020 milliseconds)
 - Should be used relatively rarely
- Speed of system set by MPC
- Beam inhibit devices approved by the MPC
- System reconfiguration
 - should be minimal
 - approved by the MPC

Beam Abort System Configuration

- Two beam inhibit devices (RFQ drive and Ion source voltage?)
- Detectors
 - Tunnel (BLMs, BCMs, etc..)
 - Gallery (selected LCS's)
 - Other ESS systems (Target)
- Signal Conditioners
 - The detectors are conditioned by signal conditioners to a prescribed transfer function
- A single serial link along the gallery connected that drives the beam inhibit signal to the beam inhibit devices
- Link interrupts
 - Placed along the gallery
 - Fed by signal conditioners
- The signal conditioners, link interrupts, serial link, should all be constructed by ICS
- The choice of detectors shall be proposed by AD and approved by MPC

EUROPEAN SPALLATION SOURCE

Safety Risks

www.europeanspallationsource.se

Safety Risks - Equipment Gallery

- The safety risks in the ESS Linac are segregated between the Equipment Gallery and Tunnel
- The Equipment Gallery will be design to follow industrial safety procedures.
 - People entering the gallery will have some knowledge of the safety risks present in the gallery (i.e. a controlled worker)
 - There will be no ionizing radiation present
 - Tunnel Shielding
 - Equipment shielding (Klystron X ray Shielding)
 - All equipment will follow industrial standards for
 - Mechanical safety
 - Electrical safety
 - non-ionizing radiation safety
 - human factors
 - Noise
 - Temperature
 - etc.
 - To make sure the equipment gallery complies with these risks
 - is hard to do !!!
 - will require a will established and often practiced review procedure (being developed at the Integration Test Stand by E. Tanke)

Safety Risks - Tunnel

- Hazards Present in the
 Tunnel
 - Ionizing radiation
 - Prompt
 - Beam Induced
 - Equipment induced (i.e. X rays in cavities)
 - Residual
 - Contamination
 - Electrical Hazards
 - Non Ionizing radiation
 - Electrocution
 - Mechanical Hazards
 - Confined spaces, heavy loads, pinch risks, etc
 - Cryogenic Hazards
 - Oxygen Deficiency
 - Direct exposure (burns, etc due to ruptures)

- Hazard mitigation
 - It is not cost effective to control tunnel hazards via industrial standards
 - The tunnel itself will be

interlocked with a Personal Safety System (PSS)

- that minimizes hazards
 - Electrocution
 - Prompt Radiation
- but does not guarantee hazards are eliminated
 - Cryogenics
 - Mechanical
 - Radioactive contamination
- Training will be a key component in addition to a PSS

Beam Loss

- We have designed the berm thickness to handle a loss rate of 1 W/meter
 - The Linac is ~500 meters long so we can afford to lose on average 500W of beam power
 - The total beam power is 5 MW
 - Average acceleration efficiency must be better than 99.99% !!!!
- The dynamic loss (electrical energy lost in the walls) in the superconducting cavities is less than 4 W
 - 20 MV; R/Q=400 Ohms; Q=1e10; Duty=4%
 - The cavities are about 1 meter long so a beam loss of 1 W/ meter would be 25% of the dynamic load!!
 - Therefore beam loss in cavities must be << 1 W meter

- In the USA, DOE Accelerator Facilities have to build their passive radiation shielding on a Maximum Credible Incident (MCI)
- MCI is the total energy deposition of an incident
- The MCI is defined by
 - The radiation authority (DOE)
 - Not the operating institution !!!
- For Example, From 1992-2003, DOE Labs operated under the "Dugan Criterion" for the MCI
 - Full beam power lost a single point at any point in the accelerator
 - For 1 hour
 - This lead to the Fermilab Main Injector to have 8 meters of shielding for a 200 kW accelerator.
- ESS does not have an MCI defined.
 - Risk: More shielding could be required by SSM at a later date

Views

- Please note that
 - these are opinions of the author
 - and do not necessarily reflect the unanimous consent of the ACCSYS Management Team
- Major unmitigated radiation issues
 - We bend a 5 MW beam **up** at the Dogleg
 - We do not have an MCI defined and accepted by SSM
- Major unmitigated conventional safety issues
 - Cryogenic burns to due ruptures in the tunnel
 - Hot water burns due to elevated temperatures and pressures in Klystron collector cooling circuits
- Over-blown safety issues
 - Fire safety
 - Sprinklers in tunnel and gallery pose more hazards than they solve