Overcoming the hurdles towards sustainable food production - Advanced measurement needs

Fredrik Innings Tetra Pak Lund University

ROTEC75 Tetra Pak® HAT'S GOO

> Security Level Brand Management/2016-04-

Tetra Pak

We specialise in providing customers with complete solutions for the processing, packaging and distribution of food products

Present in more than 170 countries and operations in all continents

• 80 sales offices

• 32 market companies

• 6 R&D units

• 11 Technical Training Centres

▲ 48 manufacturing sites

Employees: **24 000** Net sales billion €: **12**

Total world deliveries 2015

Carton packaging material, billions of packs 184

Distribution machines

Well-proven processing systems

Total number of delivered processing units 2015: 2,118

Dairy 46%

Beverage 16%

Ice Cream 7%

- Cheese and Whey 21%
- Prepared Food 6%
- Other powder 1%
- Cosmetics 3%

Our development focus has shifted over time

Providing more sustainable business

Drivers	Energy efficiency Carbon footprint Water efficiency Effluents (COD)	
Brand reputation Retailer demands Legal requirements	Energy Water Waste	Drivers Production efficiency
	 Product cost Utility cost 	Operational cost
		Economy

Ensure customer value from the very beginning

Technology Development should

Create a meaningful change in total cost of ownership of your production solutions. Ensure product quality, food safety, and environmental performance.

Result in **high-level innovation** solutions from strong **collaborations** with customers, universities and industry partners.

Milk fouling on heat exchangers

Tetra Pak

UHT with Tubular heat exchanger

Fouling is a deposit formed when processing milk

- Good quality
- Sufficient shelf-life

 Deposit with a mix of protein and mineral

Different temperatures give different fouling

Low temperature fouling ~100°C

High temperature fouling 137°C

Ca	20 wt-%
PO_4	45 wt-%
Protein	10 wt-%

UHT fouling

metal

surface

High temperature milk fouling

product

flow

	Са	PO ₄	Protein	Ca/P	Water content
	27±2%	44± 3 %	11±1 %	1.5	40-60 %
30.0					
25.0					
20.0					
15.0					−∎- Calcium
10.0					Carbon
5.0	♦				
0.0					
	Close to		1	Clo	ose to

2.2 400.0um

High temperature milk fouling

	Са	PO ₄	Protein	Ca/P	Water content
	27±2%	44± 3 %	11±1 %	1.5	40-60 %
30.0					
25.0			• 📑 • • • • •		

Short Acid Etching

Questions/Measurment needs

- What proteins build up the fouling?
 We can only measure carbon content
- ► Is the fouling built up of 5µm spheres?
- Are the spheres only β -Ca₃(PO₄)₂?
- Is the protein network a result of rearangement during time?

Induction Heating

Sealing packages at Tetra Pak

High demand pushed on to our packages

Making a composite material an efficient solution

Outside polyethylene: protection — Paperboard: stability and print — Laminate polyethylene: adhesion — Aluminium foil: oxygen, flavour and light barrier — Inside adhesive polyethylene: adhesion — Inside polyethylene: sealing, product contact —

Aseptic sealings in Tetra Pak

Internal

Forming of the tube

Inductor coil (copper tube)

Ferromagnetic

Pressure jaw

material

Macro scale: SEM picture of a seal (Cross-section)

Paper

Internal LC/2013-10-28 / 23

Questions/Measurment needs

- Does the food and the polyethylene interact?
 Does the fat droplets in the food dissolve into the polyethylene?
- Does the food mix with the polyethylene or will it form regions?

Proteins on fat drops X2

Brand Management/2016-04-

Tetra Pak

Fat droplets (in milk)

- 1. Phospholipid
- 2. Protein
- 3. Glycoprotein

Stokes' relation

Rising velocity is given by g x particle size² x (dens. SM- dens. fat) 18 x visc. milk

Homogenized product

Questions/Measurment needs

- What is the surface composition of homogenized milk?
- What is the density of the surface layer? (and the complete drop?)
- What changes when we change protein type? (Soy or oats)
- ► How fast does the proteins unfold and cover the surface?

Mayonnaise

- ► Oil in water emulsion
- ► Egg as emulsifier
- Semi-solid behaviour

Ingredients

Dispersed phase

- ► Oil
 - High volume fractions 65-80%

Emulsifier

Egg yolk

Water phase

- ► Vinegar
 - pH 4
 - Charged proteins
- Mustard
- ► Salt
 - Screening of charges
- Sugar

Langton, M., Jordansson, E., Altskär, A., Sørensen, C., & Hermansson, A. M. (1999). Microstructure and image analysis of mayonnaises. Food Hydrocolloids, 13(2), 113-125.

Impact of egg yolk type

250.0 200.0 150.0 100.0 50.0 0.0 Liquid egg yolk Egg yolk powder HS egg yolk powder

Stevens value

- Liquid egg yolk (salted and pasteurized)
- Egg yolk powder (spray-dried)
- Heat stable egg yolk powder (enzymatically treated and spray dried)

Impact of treatment time

- Peak in quality
- Egg adhesion properties destroyed by time
- Over-shear

Questions/Measurment needs

- ► How does the lipoproteins interact with the fat drops?
- ► How do they create adhesion between the drops?
- ► Do we break or agglomerate the lipoproteins during over-shear?

