

SANS study of the self-aggregation of alkylglycoside surfactants with oligomeric head-groups

Dr Federica Sebastiani

Postdoc at CR competence AB – Physical Chemistry Department, Lund University

Neutrons and Food 2016

non-ionic surfactant

non-ionic surfactant

Polysorbate 80 PEG-based surfactant

emulsification

solubilisation

prevent aggregation

wetting

etc.

non-ionic surfactant

Polysorbate 80 PEG-based surfactant

BUT...

non-ionic surfactant

Polysorbate 80 PEG-based surfactant

BUT...

oxidation

radicals

unfavourable biodegradation

phase separation at high temperature

non-ionic surfactant

Polysorbate 80 PEG-based surfactant

non-ionic surfactant

Polysorbate 80 PEG-based surfactant

Why oligomeric head-group?

Conventional technology

Conventional technology

Enzimatic technology

Conventional technology

Enzimatic technology

Conventional technology

Enzimatic technology

Conventional technology

Enzimatic technology

C16G8

Biocompatible Biodegradable From sustainable raw material Soluble

C16G8

Biocompatible Biodegradable From sustainable raw material Soluble

C16G8

$C16G8-\alpha\beta$

C16G8-β

C16G8

C16G8

2 temperatures and $c = 1 \text{ mg ml}^{-1}$

C16G8

 α OctylGic 5

βOctylGlc 6

C16G8-αβ

C16G8-β

C16G8

 α OctylGlc 5

βOctylGlc 6

C16G8-αβ

C16G8

αOctylGlc 5

βOctylGlc 6

C16G8-αβ

C16G8

βOctylGlc 6

C16G8-αβ

C16G8-β

What do we see?

C16G8

 $c = 1 \text{ mg ml}^{-1}$

αOctylGic 5

βOctylGlc 6

C16G8-αβ C16G8-β

25°C

45°C

C16G8

C16G8

 $c = 1 \text{ mg ml}^{-1}$

αOctylGlc 5

βOctylGlc 6

C16G8-αβ C16G8-β

45°C

C16G8

C16G8

 $c = 1 mg ml^{-1}$

βOctylGlc 6

C16G8-αβ C16G8-β

25°C

45°C

C16G8

C16G8

C16G8

 $c = 1 \text{ mg ml}^{-1}$

αOctylGlc 5

βOctylGlc 6

C16G8

C16G8

C16G8

C16G8

C16G8

SUMMARY

 $c = 1 \text{ mg ml}^{-1}$

αOctylGlc 5

βOctylGlc 6

C16G8

11 concentrations from 2.5 μ M to 250 μ M (cmc = 25 μ M = 0.034 mg ml⁻¹)

hydrodynamic radius, R_H NMR Diffusion

self-diffusion coefficient, D

C16G8

C16G8

C16G8

C16G8

C16G8

C16G8

C16G8

C16G8

C16G8

C16G8

Self-assembly in water

C16G8-β C16G8-αβ $\begin{cases} T = 25, 45, 65^{\circ}C \\ c = 0.1, 0.5, 1, 5, 10, \\ 20, 50 \text{ mg ml}^{-1} \end{cases}$

C16G8

C16G8

C16G8

shape and cross section

C16G8

Self-assembly in water

C16G8-β C16G8-αβ

 $\begin{cases} T = 25, 45, 65^{\circ}C \\ c = 0.1, 0.5, 1, 5, 10, \\ 20, 50 \text{ mg ml}^{-1} \end{cases}$

C16G8

C16G8

C16G8

Conclusions and Future plans

Concentration

"unconventional" cmc behaviour C16G8- β no shape change over full c range C16G8- $\alpha\beta$ thinning at high concentration (T= 25°C)

Acknowledgements

Stefan Ulvenlund CR Competence AB – Food Technology, Lund University

Karin Schillén Physical Chemistry Department, Lund University

Göran Carlström Department of Chemistry, Lund University

Lionel Porcar Institut Laue Langevin, Grenoble, France