Lipid sponge phases and nanoparticle dispersions able to entrap large biomolecules

MARIA VALLDEPERAS - LUND UNIVERSITY

Introduction

Preparation of lipid liquid crystal (LC) phases for the encapsulation of an enzyme in order to control enzyme activity and stability

1. Formation bicontinuous phases such as sponge or reverse cubic phases with large unit cell dimensions

- 2. Inclusion of aspartic protease and beta-galactosidase
- 3. Study of encapsulated enzyme activity, stability and release
- 4. Interactions between:
 - Lipid system and surfaces
 - Lipid system and the enzymes

Enzymes

- Beta-galactosidase: \approx 465kDa (\approx 14 nm)
 - Yeast Kluyveromyces lactis
 - Hydrolyses lactose to a mixture of glucose and galactose
 - − Lactose free/reduced lactose products
 →Lactose intolerance
- Aspartic protease: ≈ 34 kDa (≈ 5.7 nm)
 - Fungus Cryphonectria parasitica
 - Milk-clotting enzymes which is highly specific for kappa-casein, resulting in curd formation.
 - Cheese ripening

The lipid system

The lipid system

Monolayer thickness (I): a) 2.2 nm for Ia3d and b) 2.3 nm for Pn3m

It was considered that inverse cubic phases are curved lipid bilayer draped on an Infinite Periodic Minimal Surface (IPMS): ^{1,2}

$$\Phi_{lip+P80} = 2A_0 \left(\frac{l}{a_{cub}}\right) + \frac{4\pi\chi}{3} \left(\frac{l}{a_{cub}}\right)^2$$

Water channels diameter up to 12 nm were achieved!

The lipid system

Sponge-like nanoparticles dispersion

SANS: role of P80

Adsorption studies: QCM-D

- A quite rigid and well-defined layer is adsorbed on hydrophilic silica
- There is reorganization of molecules on the interface

UNIVERSITY

Adsorption studies: Neutron reflectometry

- L_3 NPs was found to form a bilayer of 44 Å on silica, with roughness up to 8 Å.
- · Particles partially spread and rearrange themselves on this surface

Structural changes on the lipid system

Structural changes on the lipid system

Activity test – Preliminary results

Conclusions and future work

- Addition of P80 to the DGMO/GMO-50/water system allows us to obtain highly swollen phases.
- Water channels up to 13 nm of diameter were achieved in the L₃ nanoparticles → suitable for entrapment of large biomolecules
- Addition of both enzymes induce a phase shift to the cubic phases.
- Adsorption studies suggest that the L₃ nanoparticles self-assemble on hydrophilic silica by forming a bilayer→ possible use as drug delivery process
- Further work:
 - Check activity and stability of the encapsulated enzyme
 - Locate the enzyme and study the enzyme-lipid interactions by SANS and NR experiments.

Acknowledgments

Tommy Nylander

Justas Barauskas

Aleksandra Dabkowska

Maor Ram-On

Ishi Talmon

Ellina Kesselman

Dganit Danino

Beam lines:

SANS2D: Sarah Rogers

SuperADAM: Gunnar Palsson and Anton Devishvili

Funding:

Thank you for your attention