$f(x+\Delta x) = \sum_{i'}^{\infty} \frac{(\Delta x)^{i}}{i'} f^{(i)}(x)$

Layered Surface Detection in Micro-CT Tetra Pak Data

Vedrana Andersen Dahl, DTU Compute (NEXIM) Christel Andersson, Tetra Pak Packaging Solutions AB Camilla Himmelstrup Trinderup, DTU Compute Carsten Gundlach, DTU Physics

Neutrons and Food 2016, Lund

DTU Compute Department of Applied Mathematics and Computer Science

Focus on...

- ▶ Geometry based image analysis: principles, challenges, opportunities
- Layered surface detection algorithm
- Application: Micro-CT data of Tetra Pak packages with straw opening

Tetra Pak packages with drinking straw

The membrane covering the pre-punched straw hole has to

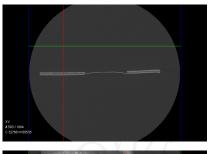
- hold the liquid content inside the package
- allow for easy opening
- allow for good flow of the liquid product (requires wider straw)
- meet requirements for production cost, converting production speed, package filling machine speed

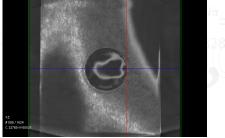
Straw hole opening

- circular hole in carton packaging
- Iaminated membrane: aluminium foil (6 μm thick) between layers of polymer

Exact geometry

- important for product development and quality control
- can be used directly as an input to the virtual simulation models for product development

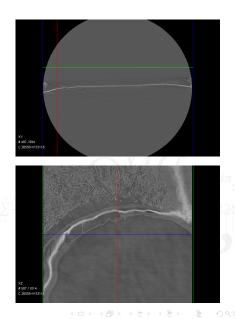

Micro-CT Tetra Pak data


DTU Imaging Industry Portal

- assists companies in using 3D imaging in research, development and production
- expertise in CT, materials science, instrumentation and data analysis

Data acquisition

- Three resolutions
 - Objective: LFOW, Pixel size: 21.2 μm
 - Objective: 4X
 Pixel size: 4.7 μm
 - Objective: 10X
 Pixel size: 1.9 μm
- Other settings
 - Voltage 40 kV
 - Power 10 W
 - Filter AIR
 - Exposure: 5 s, 5s, 25 s

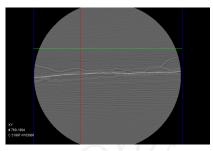

Micro-CT Tetra Pak data

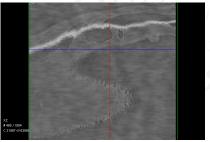
DTU Imaging Industry Portal

- assists companies in using 3D imaging in research, development and production
- expertise in CT, materials science, instrumentation and data analysis

Data acquisition

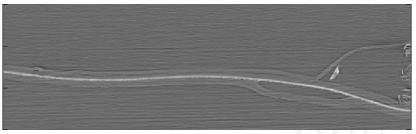
- Three resolutions
 - Objective: LFOW, Pixel size: 21.2 μm
 - Objective: 4X
 Pixel size: 4.7 μm
 - Objective: 10X
 Pixel size: 1.9 μm
- Other settings
 - Voltage 40 kV
 - Power 10 W
 - Filter AIR
 - Exposure: 5 s, 5s, 25 s


Micro-CT Tetra Pak data

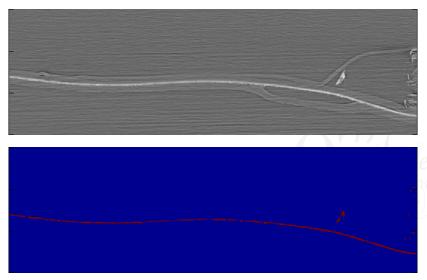

DTU Imaging Industry Portal

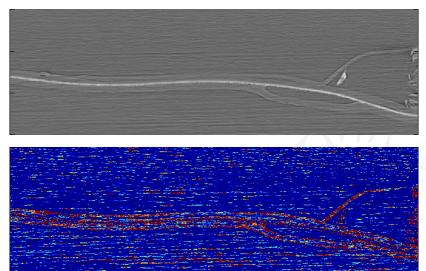
- assists companies in using 3D imaging in research, development and production
- expertise in CT, materials science, instrumentation and data analysis

Data acquisition


- Three resolutions
 - Objective: LFOW, Pixel size: 21.2 μm
 - Objective: 4X
 Pixel size: 4.7 μm
 - Objective: 10X
 Pixel size: 1.9 μm
- Other settings
 - Voltage 40 kV
 - Power 10 W
 - Filter AIR
 - Exposure: 5 s, 5s, 25 s

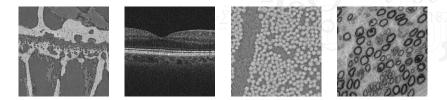
Extracting the exact geometry, initial analysis

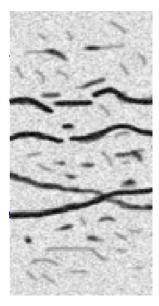

Part of a slice from a volume with dimensions $980\times984\times1004$ voxels


Extracting the exact geometry, initial analysis

Thresholding aluminium foil - ok

Extracting the exact geometry, initial analysis

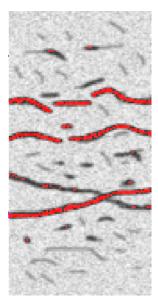

Thresholding plastic membrane - noisy


Image/volume segmentation: principles, challenges

Geometry based segmentation

- Local methods (thresholding, filtering, morphology) may be sufficient for segmentation and quantification, but often need to be combined with global methods, e.g. geometrical models.
- ▶ Our interpretation of data depends on assumptions made under analysis.
- All image/volume segmentation is based on assumptions, sometimes implicit.
- ▶ Size of the data is an extra challenge. Especially while developing a model!
- ▶ Tetra Pak data: combining an appearance model with a geometric model.

Surface detection, suggested geometric model

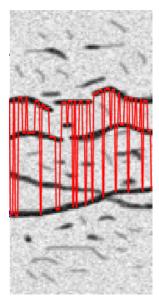


- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

 $\min\sum_{x,y} c(x,y,f(x,y))$

- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost

Surface detection, suggested geometric model

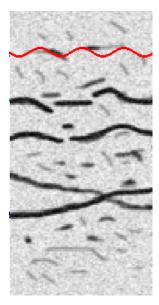


- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

 $\min\sum_{x,y} c(x,y,f(x,y))$

- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost

Surface detection, suggested geometric model

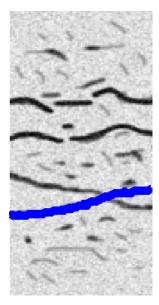

- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

 $\min\sum_{x,y} c(x,y,f(x,y))$

- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost

◆□▶ ◆帰▶ ◆国▶ ◆国▶ - 国 - の久⊙

Surface detection, suggested geometric model

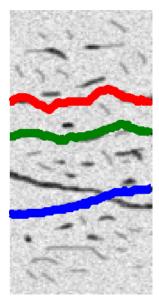


- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

 $\min\sum_{x,y} c(x,y,f(x,y))$

- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost

Surface detection, suggested geometric model

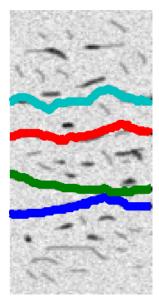


- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

 $\min\sum_{x,y} c(x,y,f(x,y))$

- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost

Surface detection, suggested geometric model

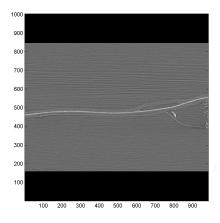


- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

 $\min\sum_{x,y} c(x,y,f(x,y))$

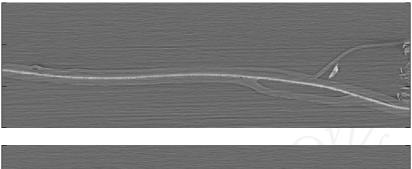
- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost

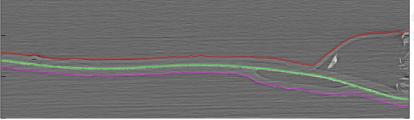
Surface detection, suggested geometric model



- Terrain-like surfaces
 - z = f(x, y)
- Smoothness
 - $|f(x+n,y)-f(x,y)|<\Delta$
 - $|f(x, y+n) f(x, y)| < \Delta$
- Optimality (surface cost)

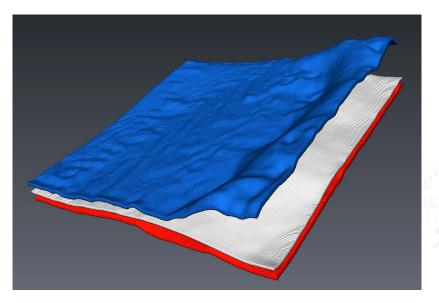
 $\min\sum_{x,y} c(x,y,f(x,y))$


- Geometric constraints reduce the number of acceptable outcomes
- Optimal solution can be found using a graph-cut based search
- Additional modelling options: layered surfaces, region based cost


Surface detection, suggested appearance model

- Surfaces
 - aluminium foil
 - lower edge of the lower polymer layer
 - upper edge of the upper polymer layer
- Aluminium foil:
 - binary aluminium foil response
- Lowest and highest edge, a weighted sum of four contributions:
 - relaxed plastic membrane response
 - edge response
 - repulsion from aluminium foil (limited range)
 - cumulative term (first strong occurrence)

Visualized on a slice



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Analysis

Results ○●○

Volumetric results

Discussion

Possible improvements

- Improvements: accuracy, efficiency (hierarchical approach)
- Extensions: multiple layers, inside regions

Interpretation

- Geometric constraints will always be met.
- Should be coupled with the assessment of the quality of the fit.

Thank you!

DTU Compute Department of Applied Mathematics and Computer Science