The ESS Cryogenics System


February 2016
Outline

- Introduction to ESS
- Applications of Cryogenics at ESS
  - Accelerator Cryoplant
  - Cryogenic Distribution System
  - Target Moderator Cryoplant
  - Test and Instruments Cryoplant
- He Recovery and Storage
- Energy Recovery
- Summary
The goal of ESS is to provide a spallation based neutron source significantly more powerful than existing sources: 30 - 100 times brighter than ILL and 5 times more powerful than SNS.

This facility will enable neutron based research in a wide range of fields including: materials science, condensed matter and biomedical studies.
ESS Overview

5 Times more powerful than SNS
30 - 100 times brighter than ILL

Linear proton accelerator (600 m)

Target station

Neutron science systems
The view of the Southwest in 2025

- MAX IV – a national research facility, under construction, opens up in 2016
- Science City – a new part of town
- ESS – an international research facility

Malmö (309 000)
Lund (113 500)
Copenhagen (1 200 000)
Applications of Cryogenics at ESS

- Cooling for the cryomodules (2 K, 4.5 – 300 K and 40 K)
- Cooling for the Target supercritical H₂ Moderator (16.5 K)
- Liquid Helium and Liquid Nitrogen for the Neutron Instruments
- Cooling for the cryomodule test stand (2 K, 4.5 – 300 K and 40 K)
- This is accomplished via 3 separate cryoplants
Bulk of acceleration is carried out via 3 classes of SRF cavities: Spoke, Medium ($\beta = 0.67$) Beta Elliptical and High ($\beta = 0.86$) Beta Elliptical

No superconducting magnets in the accelerator. There are some in the instruments

Cavities operate at 2 K with a 40 – 50 K thermal shield

Inner power coupler cooling from 4.2 K to 300 K

Accelerator lattice permits an 14 additional cryomodules to compensate for lower than expected cryomodule gradients (Stage 2)
## ESS Linac

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy (MeV)</th>
<th>No. of Modules</th>
<th>No. of Cavities</th>
<th>$\beta$ g</th>
<th>Temp (K)</th>
<th>Cryo Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>0.075</td>
<td>1</td>
<td>0</td>
<td>–</td>
<td>~300</td>
<td>–</td>
</tr>
<tr>
<td>LEBT</td>
<td>0.075</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>~300</td>
<td>–</td>
</tr>
<tr>
<td>RFQ</td>
<td>3.6</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>~300</td>
<td>–</td>
</tr>
<tr>
<td>MEBT</td>
<td>3.6</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>~300</td>
<td>–</td>
</tr>
<tr>
<td>DTL</td>
<td>90</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>~300</td>
<td>–</td>
</tr>
<tr>
<td>Spoke</td>
<td>220</td>
<td>13</td>
<td>2 (2S) × 13</td>
<td>0.5 $\beta_{\text{opt}}$</td>
<td>~2</td>
<td>4.14</td>
</tr>
<tr>
<td>Medium $\beta$</td>
<td>570</td>
<td>9</td>
<td>4 (6C) × 9</td>
<td>0.67</td>
<td>~2</td>
<td>8.28</td>
</tr>
<tr>
<td>High $\beta$</td>
<td>2000</td>
<td>21</td>
<td>4 (5C) × 21</td>
<td>0.86</td>
<td>~2</td>
<td>8.28</td>
</tr>
<tr>
<td>HEBT</td>
<td>2000</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>~300</td>
<td>–</td>
</tr>
</tbody>
</table>

**Notes:**
- $\beta_{\text{opt}}$ is the optimal $\beta$ for the Medium $\beta$ section.
- Cryo Length (m) values are approximate and may vary slightly.

**February 2016**

J.G. Weisend II
Elliptical Cavities & Cryomodule

- Similar to CEBAF/SNS cryomodule concept with 4 cavities per cryomodule
- Common design for medium (6 cells) and high beta (5 cells) cavities
Spoke cavity string and cryomodule package

Diameter 1350 mm

February 2016

2900 mm

J.G. Weisend II
ESS Accelerator Cryoplant (ACCP)

• Provides cryogenic cooling to Cryomodules
  • 13 Spoke and 30 Elliptical (Stage 1)
  • Sized to allow an additional 14 Elliptical Cryomodules for design contingency (Stage 2) – will take roughly 1 year to implement if required

• Allows for number of operating modes
• Connected to the cryomodules via a cryogenic distribution system
• High availability and turn down capability are important features
• Compressor heat is absorbed by Lund District Heating System (unique ESS feature)
# Accelerator Cryoplant (ACCP) Capacities

<table>
<thead>
<tr>
<th>Operation modes</th>
<th>2 K Load, W</th>
<th></th>
<th></th>
<th>4.5 K Load</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isothermal</td>
<td>Non-</td>
<td>Total</td>
<td>4.5 K, W</td>
<td>Liquefaction,</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>isothermal</td>
<td></td>
<td>Total</td>
<td>g/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 2019-2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal</td>
<td>1852</td>
<td>627</td>
<td>2478</td>
<td>6.8</td>
<td>8551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turndown</td>
<td>845</td>
<td>627</td>
<td>1472</td>
<td>6.8</td>
<td>8551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td></td>
<td></td>
<td>1472</td>
<td>6.8</td>
<td>8551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS Standby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8551</td>
</tr>
<tr>
<td>Maximal Liquefaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8551</td>
</tr>
</tbody>
</table>
|                          | Loads in standby mode plus maximum liquefaction rate at rising level into the storage tank
| Stage 2 2023-...         |             |          |          |            |          |          |          |
| Nominal                  | 2226        | 824      | 3050     | 9.0        | 11380    |          |          |
| Turndown                 | 1166        | 824      | 1990     | 9.0        | 11380    |          |          |
| Standby                  |             |          | 1990     | 9.0        | 11380    |          |          |
| TS Standby               |             |          |          |            |          |          | 11380    |
| Maximal Liquefaction     |             |          |          |            |          |          | 11380    |
|                          | Loads in standby mode plus maximum liquefaction rate at rising level into the storage tank
ACCP – Contract Award to Linde Kryotechnik AG in December 2014

Compressor System:
Three identical machines for SP→MP, LP→MP and MP→HP compression, hot standby compressor is under discussion

System uses 3 cold compressors + 1 warm sub-atmospheric compressor for 2 K cooling

One Coldbox comprising 6 expansion turbines, 3 cold compressors, in-built acceptance test equipment

Kick Off Meeting was held on May 8
PDR-1: Sept 2 -3

February 2016
Note:
1) No LN$_2$ Precooling
2) Last stage of subatmospheric pumping is warm
Cryogenic Distribution System

- Allows warm up and cool down of one or more cryomodules w/o affecting remaining cryomodules
- Connection between distribution line & cryomodule is done via fixed connections
- Separate isolation vacuums in the distribution lines and cryomodules
- Operating modes defined
- Conceptual design complete
- Provided as an In Kind Contribution by IPN Orsay (France) and WrUT (Poland)
- Cryogenic Distribution System must be complete and installed by December of 2017
Cryogenic System of the Optimus Linac

- Cryogenic Distribution Line (310 m) comprising 43 valve boxes
- Linac Cryoplant
- Cryogenic Transfer Line (75 m)
- Splitting box
- 21 High Beta Cryomodules (174 m)
- 9 Medium Beta Cryomodules (75 m)
- 13 Spoke Cryomodules (54 m)
- Superconducting section of the Optimus Linac (303 m)
- Auxiliary process lines
- Endbox

February 2016

J.G. Weisend II
Valve box – vacuum jacket

- Jumper connection vacuum jacket with a lateral compensators (vertical: DN350 horizontal: DN450)
- Interconnection sleeve at the interface to the cryomodule
- Cryoline interconnection sleeve with axial compensator (DN600)
- Valve box vacuum jacket
- Bottom plate (demountable)
- Cryoline vacuum jacket (DN550)
- Valve box supports
- Cryoline support

February 2016
J.G. Weisend II
CDS – In kind Agreements with IPNO and WrUT

PDR was held with WrUT on May 20
Heat Load at 15 K increased from 20 kW to 30.3 kW due to moderator re-design (higher brightness, more neutrons)

Impact on space requirements, utilities, interference with other cryoplants and budget (minimal impact on schedule) – technical solutions are currently worked out

Tight collaboration with FZ Jülich, TU-Dresden and Hans Quack

Proposals received in January 2016

Plant will likely be ordered in Q1 2016
Target Moderator Cryoplant
Test & Instruments Cryoplant (TICP)

- Provides cooling for Cryomodule Test Stand
- During Science Operations, also provides LHe for sample environments and Science Instruments
- TICP provides for CM testing: 76 W at 2 K, 422 W at 40 K and 0.2 g/s of liquid helium
- Sub-atmospheric operation via warm vacuum pumps
- During Science Operations, the TICP shall provide more than 7500 liters of LHe per month
- A recovery system is being built to recover all He gas from instrument halls and return it for purification and liquefaction.
- Vendor selected (Air Liquide). Kick off meeting this week
Helium Recovery and Storage

- The ESS goal is to recovery, purify and reuse as much He as possible
- ACCP and TICP cryoplants will share a common gas system while TMCP has separate storage that can be cross connected
- The system will include a separate cryogenic purifier
- Systems will be provided by IKC or separate contracts
- Expected He Storage Capacities:
  - LHe
    - 20 m³ (Includes storage for second fill of linac)
    - 5 m³ (Backup for Instruments He)
  - GHe (20 Bar)
    - 1000 m³ - sufficient to hold all the linac inventory
  - GHe (200 Bar)
    - 12 m³ - Instrument He storage
Plant arrangement in the Cold Box Building

ACCP

5 m³ LHe Tank

TICP

20 m³ LHe Tank

TMCP
Plant arrangement in the Compressor Building

Compressor Hall for TICP and TMCP

Compressor Hall for ACCP

Compressor Building Foundation Work on Site Started in August 2015

February 2016

J.G. Weisend II
During nominal operating mode in Stage 2 – a total of 2.48 MW are deposited into District Heating from the ACCP.
WP11 Master Schedule

**MASTER SCHEDULE - WP11 CRYOGENICS**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**MILESTONES**

- **SYSTEM DESIGN AND PROCUREMENT**
- **INSTALLATION AND COMMISSIONING**

**WARM PIPING**
- CALL FOR TENDERS PUBLISHED
- INSTALLATION STARTS
- WARM PIPING READY

**ACCELERATOR CRYOPLANT**
- CALL FOR TENDERS PUBLISHED
- INSTALLATION STARTS
- ACCELERATOR CRYOPLANT READY

**INSTRUMENTS AND TESTS CRYOPLANT**
- CALL FOR TENDERS PUBLISHED
- INSTALLATION STARTS
- INSTRUMENTS AND TESTS CRYOPLANT READY

**TARGET CRYOPLANT**
- CALL FOR TENDERS PUBLISHED
- INSTALLATION STARTS
- TARGET CRYOPLANT READY

**CRYOGENIC DISTRIBUTION LINE**
- TECHNICAL SPECIFICATION PUBLISHED FOR IN-KIND AGREEMENT
- INSTALLATION STARTS
- CRYOGENIC DISTRIBUTION LINE READY

**FIRST PROTONS ON TARGET 570 MeV**
- 13-AUG-2019

**2 GeV PROTONS AVAILABLE**
- 23-SEP-2022

**Data Extracted by P6 Planning - May 2015**

**Prepared by P. Arnold & L. Lari**

**Checked by J. Weisend**

**Approved by M. Lindroos**

February 2015  J.G. Weisend II
Comments on Operations & Tunnels

Access

• Linac will remain cold for more than 2 years at a time. – Thermal cycling of the complete system will be infrequent. Thermal cycling of single cryomodule will occur more often but should still be somewhat rare.

• Regular access to the tunnel with the linac cold is required

• It is expected that all beam line gate valves will be closed prior to tunnel access

• We estimate that it only takes 2 – 3 hours for the entire linac to go from LHe at 4.2 K to LHe at 2 K

• However, going from 5 K without liquid to 4.2 K LHe has to be done carefully to avoid flashing, pressure spikes and sudden venting. This could take many hours.
Summary

• Cryogenics will play a major role in ESS and affects the accelerator, target and instruments projects

• Work is well underway
  • A very skilled team has been assembled
  • Conceptual designs and technical specifications are complete
  • Required buildings and utilities have been defined and are under construction
  • Accelerator Cryoplant order has been placed (Kick off meeting was held on May 8)
  • Test & Instruments Cryoplant order has been placed (Kick off meeting this week)
  • PDR1 and PDR2 for the ACCP has been held.
  • PDR for the WrUT portion of the CDS was held on May 2015
  • Additional cryoplant orders will be placed in early 2016