The normal conducting linac

Aurélien Ponton

European Spallation Source
Accelerator Division

ESS Technical Advisory Committee, 14-15 November 2012, Lund, Sweden
Outline

1. Introduction

2. Ion source and Low Energy Beam Transfer (LEBT) line
 - Ion source
 - LEBT

3. Radio-Frequency Quadrupole (RFQ)

4. Medium Energy Beam Transfer (MEBT)

5. Drift Tube Linac (DTL)
Outline

1 Introduction

2 Ion source and Low Energy Beam Transfer (LEBT) line
 - Ion source
 - LEBT

3 Radio-Frequency Quadrupole (RFQ)

4 Medium Energy Beam Transfer (MEBT)

5 Drift Tube Linac (DTL)
Introduction

Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Figure: The ESS linac layout.

Table: Top level parameters.

<table>
<thead>
<tr>
<th>Ion type</th>
<th>H^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak current</td>
<td>50 mA</td>
</tr>
<tr>
<td>Pulse length</td>
<td>2.86 ms</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>14 Hz</td>
</tr>
</tbody>
</table>

Figure: Warm linac cost distribution.
Introduction

Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

<table>
<thead>
<tr>
<th>Goals (challenges) of the NC linac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of a high quality beam with well defined temporal pulse, a short emittance and minimal halo:</td>
</tr>
<tr>
<td>- Minimization of the losses throughout the high energy part</td>
</tr>
<tr>
<td>- Maximizing the overall reliability of ESS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design philosophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Rely on the expertise and knowledge of our partner institutions</td>
</tr>
<tr>
<td>- Conventional designs</td>
</tr>
<tr>
<td>- Take into consideration the lessons learned from current and past machines/devices</td>
</tr>
</tbody>
</table>

The following table shows the work distribution:

<table>
<thead>
<tr>
<th>Management</th>
<th>Head</th>
<th>Institutes</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Source and LEBT</td>
<td>S. Gammino</td>
<td>INFN-LNS</td>
<td>Catania</td>
</tr>
<tr>
<td>RFQ</td>
<td>L. Celona</td>
<td>INFN-LNS</td>
<td>Catania</td>
</tr>
<tr>
<td>MEBT</td>
<td>B. Pottin</td>
<td>CEA-Irfu</td>
<td>Saclay</td>
</tr>
<tr>
<td>DTL</td>
<td>I. Bustinduy</td>
<td>ESS-Bilbao</td>
<td>Bilbao</td>
</tr>
<tr>
<td></td>
<td>A. Pisent</td>
<td>INFN-LNL</td>
<td>Legnaro</td>
</tr>
</tbody>
</table>

Table: Work distribution.
Introduction

Ion source and Low Energy Beam Transfer (LEBT) line

- Ion source
- LEBT

Radio-Frequency Quadrupole (RFQ)

Medium Energy Beam Transfer (MEBT)

Drift Tube Linac (DTL)
Ion Source

<table>
<thead>
<tr>
<th>Type</th>
<th>MDIS(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>2.45 GHz</td>
</tr>
<tr>
<td>Power</td>
<td>1 – 1.5 kW</td>
</tr>
<tr>
<td>Background pressure</td>
<td>1 · 10(^{-5}) mbar</td>
</tr>
<tr>
<td>Magnetic system</td>
<td>3 solenoids</td>
</tr>
<tr>
<td>Extraction system</td>
<td>4 electrodes</td>
</tr>
<tr>
<td>Extraction Voltage</td>
<td>75 keV</td>
</tr>
<tr>
<td>Extracted current</td>
<td>50 – 90 mA</td>
</tr>
</tbody>
</table>

Table: Ion source main parameters.

1 Microwave Discharge Ion Source: plasma direct absorption of EM waves through the ECR mechanism

Figure: The ESS ion source drawing.

Similarities: TRIPS and VIS sources (Catania), SILHI source (Saclay)
Introduction

Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

General layout and roles

Roles

1. Transport and match the beam from the ion source into the RFQ
2. Chop the unwanted parts of the beam pulse due to rise/fall time of the ion source

Figure: Ion source and LEBT set-up.
Transport of the unchopped beam

Design choices

- Dual solenoid LEBT similar to IFMIF and LINAC 4
- Solenoids are IFMIF-type
- 2 repeller electrodes to enhance the electron population and enable high Space Charge Compensation (SCC):
 - In the ion source extraction system
 - In the RFQ collimator cone

Figure: Beam transport in the LEBT (98% SCC).
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Transport of the unchopped beam

Figure: Beam transport in the LEBT (98 % SCC).

Design choices
- Dual solenoid LEBT similar to IFMIF and LINAC 4
- Solenoids are IFMIF-type
- 2 repeller electrodes to enhance the electron population and enable high Space Charge Compensation (SCC):
 - In the ion source extraction system
 - In the RFQ collimator cone
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Introduction
Ion source
LEBT

Chopping

Characteristics of the LEBT chopper
- Electrostatic
- Placed in between the 2 solenoids
- Electronics similar to Spiral 2 (tested): switching speed 15 ns

Beam behavior during transient SCC process
- Beam fall time: 20 ns
- Beam rise time: 300 ns (we need a little bit more to restore the beam matched parameters into the RFQ)

Figure: LEBT chopper

Figure: RFQ collimator.

Figure: LEBT chopper

Figure: RFQ collimator.
Outline

1. Introduction

2. Ion source and Low Energy Beam Transfer (LEBT) line
 - Ion source
 - LEBT

3. Radio-Frequency Quadrupole (RFQ)

4. Medium Energy Beam Transfer (MEBT)

5. Drift Tube Linac (DTL)
Evolution of the performance requirements:

Before 2012
- Initial operation at peak current of 50 mA but upgradeable to 75 mA
- Beam loss above 2 MeV is limited to 1 W/m
- Both transverse and longitudinal emittances are minimized to reduce the potential for subsequent halo development
- There should be no longitudinal tails as they are known to translate into transverse halo

⇒ 5 meters RFQ

2012
- Peak operational beam current will not exceed 50 mA
- No limit to allowable beam loss below 3 MeV
- Halo development and beam loss in the high energy linac section traceable to the RFQ are minimized
- No longitudinal tails as they are known to translate into transverse halo
- Phase advances are matched to adjacent sections

⇒ 4 meters RFQ
Introduction

Ion source and Low Energy Beam Transfer (LEBT) line

Radio-Frequency Quadrupole (RFQ)

Medium Energy Beam Transfer (MEBT)

Drift Tube Linac (DTL)

Benefits of a shorter RFQ

- Reduced potential fabrication and operational risks
 - Less tuners and vacuum and RF seals
 - Less vacuum pumps
- Lower cost:
 - Construction: machining and brazing
 - Operation: less dissipation in copper

Present and future work

- Recent design change
- Beam dynamics study (pole tip design) just completed
- The following deals with the 5 meters RFQ
- Work on progress to update the RFQ engineering design
- Construction phase planning unaffected
- Methodology already established
Introduction

Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Main parameters of the 4-vanes RFQ for ESS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-vane voltage</td>
<td>kV</td>
<td>80 to 120</td>
</tr>
<tr>
<td>Synchronous phase, ϕ_S</td>
<td>deg</td>
<td>-90 to -31</td>
</tr>
<tr>
<td>Minimal aperture, a</td>
<td>mm</td>
<td>3 to 3.9</td>
</tr>
<tr>
<td>Modulation factor, m</td>
<td></td>
<td>1 to 2.06</td>
</tr>
<tr>
<td>Vane radius of curvature, ρ</td>
<td>mm</td>
<td>3 (constant)</td>
</tr>
<tr>
<td>Vane length, L</td>
<td>m</td>
<td>4.93</td>
</tr>
<tr>
<td>Kilpatrick limit, k_p</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>RF power budget</td>
<td>kW</td>
<td>1 638</td>
</tr>
<tr>
<td>Frequency</td>
<td>Mhz</td>
<td>352.21</td>
</tr>
</tbody>
</table>

Table: RFQ main parameters.

Figure: Geometric parameters of the RFQ.

Roles of the RFQ

- Acceleration from 75 keV to 3 MeV
- Focalization in the 3 planes
- Shape the continuous beam in a train of bunches suitable for RF acceleration
2D cross section design

In order to produce the voltage profile $V(z)$ the position of the electrode lateral surface (points J5 and J6) varies: $x_{J6} \in [63, 73]$ mm, $y_{J6} = x_{J6}$.
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Stability analysis

Goals
1. Tune the accelerating mode boundary conditions to a null quadrupole voltage slope at both ends
2. Tune dipolar voltage log-slope parameter to some value in the stability region

How?
1. Quadrupolar rods
2. Proper choice of the vane undercuts

Figure: 3D views of the RFQ extremities.
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Stability analysis

Goals
1. Tune the accelerating mode boundary conditions to a null quadrupole voltage slope at both ends
2. Tune dipolar voltage log-slope parameter to some value in the stability region

How?
1. Quadrupolar rods
2. Proper choice of the vane undercuts

Remarks
- Unsegmented RFQ: no coupling plates
- No dipole rods required

Table: Stability study results.

<table>
<thead>
<tr>
<th>Vane undercut [mm]</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>28.2</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Aurélien Ponton
NC Linac
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Tuning

Figure: Distributions of tuner and field-sampling locations.

- Slug tuners dedicated to compensate the voltage errors resulting from **construction tolerances only**
- S=15 equispaced tuners per quadrant
- 80 mm diameter and position range in $[-30, +30]$ mm
- Bead pull measurement in the magnetically dominant region
- T=2S sampling points
- V/H_z perturbation is smaller than 1% at the field sampling points
RF power coupling

Figure: 3D view of the tuning loop.

Half circular loops

- TRASCO and SPIRAL 2
- Can be rotated
- Coupled power varies from 469 kW to 234 kW (45 degrees rotation)
- Preferably located at mid point between two adjacent tuners
- Voltage perturbation smaller than $1.8 \cdot 10^{-3}$
Outline

1. Introduction

2. Ion source and Low Energy Beam Transfer (LEBT) line
 - Ion source
 - LEBT

3. Radio-Frequency Quadrupole (RFQ)

4. Medium Energy Beam Transfer (MEBT)

5. Drift Tube Linac (DTL)
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Main parameters and roles

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>MeV</td>
<td>3</td>
</tr>
<tr>
<td>Number of quadrupoles</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Min. quadrupole gradient</td>
<td>T/m</td>
<td>9</td>
</tr>
<tr>
<td>Max. quadrupole gradient</td>
<td>T/m</td>
<td>30</td>
</tr>
<tr>
<td>Number of bunchers</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Frequency</td>
<td>Mhz</td>
<td>352.21</td>
</tr>
<tr>
<td>Peak power per cavity</td>
<td>kW</td>
<td>14</td>
</tr>
<tr>
<td>Effective voltage, E_0TL</td>
<td>kV</td>
<td>150</td>
</tr>
<tr>
<td>Length</td>
<td>m</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table: MEBT main parameters.

Goals
- Match the beam from the RFQ into the DTL: quads and bunchers
- Give the beam its temporal structure: electrostatic chopper with 10 ns rise time
- Address a collimation strategy
- Fully characterize the beam with a given set of diagnostics
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

General layout

Figure: ESS MEBT general layout and RMS beam size (blue: x and red: y)
Scrapers

Figure: Beam parameters evolution with and without scrapers (blue: x, red: y, green: z).

- 3 locations determined by beam dynamics study
- 4 stepping motors per location
- IFMIF-like design

Collimation strategy is mandatory to limit halo development and hazardous losses at high energy
Bunching cavities

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>MHz</td>
<td>352.21</td>
</tr>
<tr>
<td>Q_0</td>
<td></td>
<td>23477</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>0.593</td>
</tr>
<tr>
<td>$V_0 T$</td>
<td>kV</td>
<td>140</td>
</tr>
<tr>
<td>P</td>
<td>kW</td>
<td>14.02</td>
</tr>
<tr>
<td>r</td>
<td>MΩ</td>
<td>1.4</td>
</tr>
<tr>
<td>ZT^2</td>
<td>MΩ/m</td>
<td>11.1</td>
</tr>
<tr>
<td>E_{surf}</td>
<td>MV/m</td>
<td>27.2</td>
</tr>
<tr>
<td>k_p</td>
<td></td>
<td>1.47</td>
</tr>
</tbody>
</table>

Table: Bunching cavity main parameters.

Figure: Bunching cavity and coupler.
Outline

1. Introduction

2. Ion source and Low Energy Beam Transfer (LEBT) line
 - Ion source
 - LEBT

3. Radio-Frequency Quadrupole (RFQ)

4. Medium Energy Beam Transfer (MEBT)

5. Drift Tube Linac (DTL)
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Main parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>MHz</td>
<td>352.21</td>
</tr>
<tr>
<td>Energy</td>
<td>MeV</td>
<td>3 to 78</td>
</tr>
<tr>
<td>Lattice type</td>
<td></td>
<td>FODO</td>
</tr>
<tr>
<td>Number of tanks</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>RF power per tank</td>
<td>MW</td>
<td>2.15</td>
</tr>
<tr>
<td>k_p</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>Trans. focusing</td>
<td>perm. magnets</td>
<td>30 to 70</td>
</tr>
<tr>
<td>Quad. gradient</td>
<td>T/m</td>
<td>30 to 70</td>
</tr>
<tr>
<td>Long. focusing scheme</td>
<td>ramped field</td>
<td>2.8 to 3.2</td>
</tr>
<tr>
<td>E_0</td>
<td>MV/m</td>
<td>2.8 to 3.2</td>
</tr>
<tr>
<td>k_p</td>
<td></td>
<td>1.47</td>
</tr>
</tbody>
</table>

Table: DTL main parameters.

design choices
- Mechanical design based on LINAC 4
- FODO: half of the DTs for allocation of steerers and diagnostics
- Surface electric field limited to avoid sparking
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Layout

Figure: DTL overview and summary of tank properties.
RF design

- Ramped E_0: variation of the face angle
- Validated by 3D analysis
- Mechanical feasability checked/
 Consistent tank design
- Post couplers needed for field stability
- Frequency errors: slug tuners, 45
 degrees from stem, 90 mm diameter,
 uniformly spaced every 30 cm

Figure: DT design.

Figure: 3D model.
Introduction
Ion source and Low Energy Beam Transfer (LEBT) line
Radio-Frequency Quadrupole (RFQ)
Medium Energy Beam Transfer (MEBT)
Drift Tube Linac (DTL)

Thanks for your attention