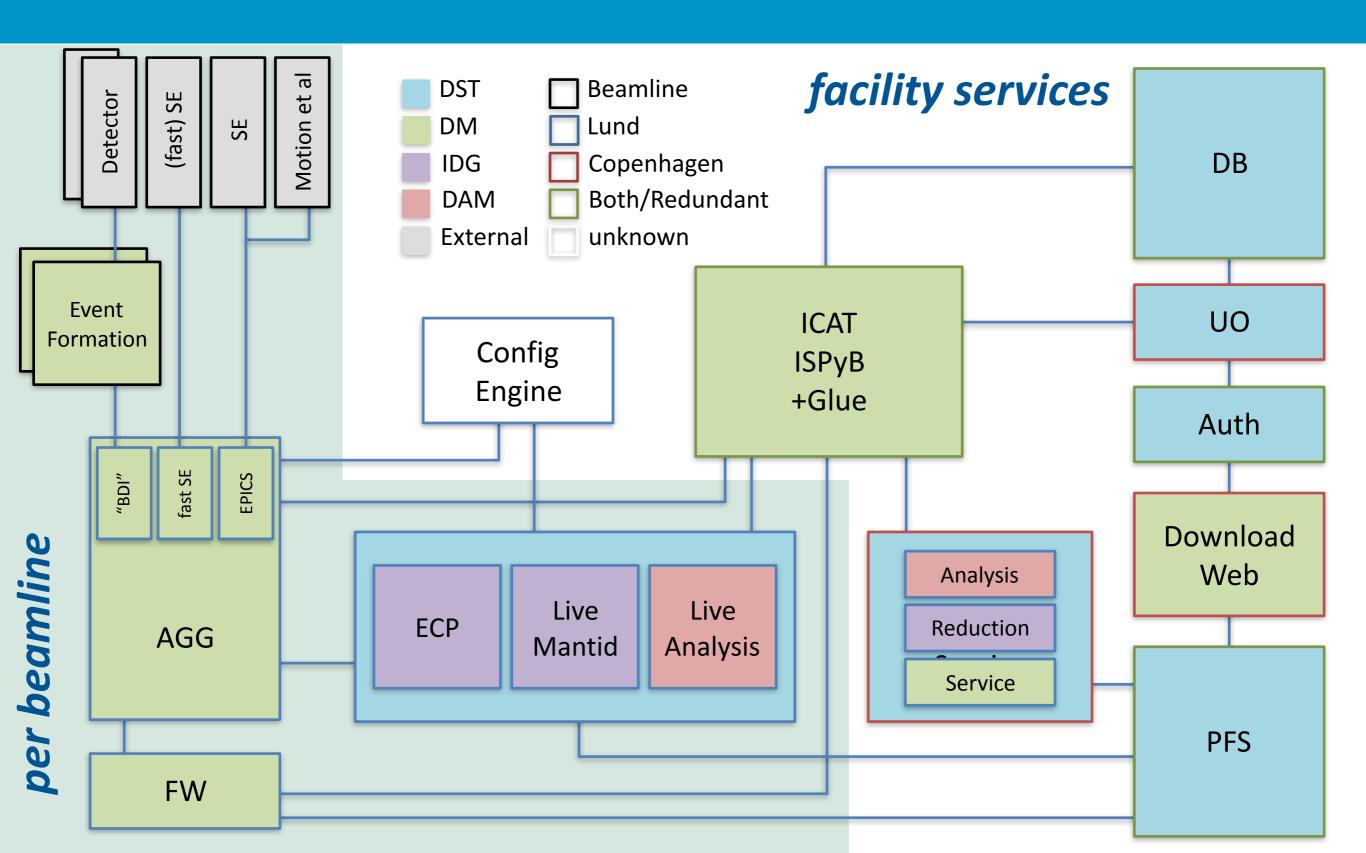
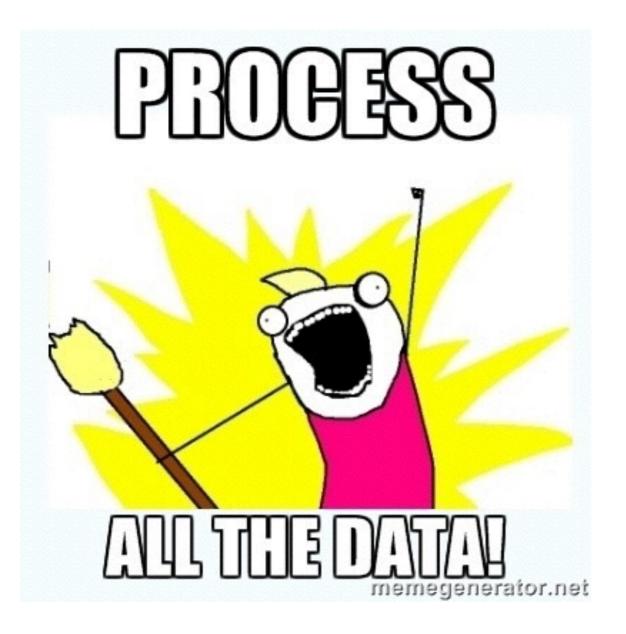


EUROPEAN SPALLATION SOURCE

NMX Data Read Out and Software Processing

DMSC Tobias Richter


tobias.richter@esss.se


2016-02-01

Experiment	Set-up beam line configuration:: trigger DAQ	Instrument data group	EUROPEAN SPALLATION SOURCE
control Stream	Data stream to "listener" Listener is a file writer Listener is Mantid	Data Management group	
Reduce	Data reduced from <i>tof</i> to S(q,w), I(q _x ,q _y ,q _z)	Instrument data group	Phase 1 Instrument: Requirements Scope
Visualise	Visualisation of data 1D, 2D, 3D, 4D	Data analysis and modelling.	Schedule
	Analysis of reduced data	SasView McStas	

DMSC Architecture

Event Formation

What do we want?

- events
- format and volume or rate
- algorithms
- trial data

When do we want it?

now (obviously)

Events - What are those?

Neutron Scattering needs two items:

Pixel-ID

- discrete location
- precision instrument specific ^{#07}
- any geometry (in principle)
- can be in 2D or 3D
- 32bit likely

1	datetime	datetime2	UTC datetime	UTC_date	datatimeoffset
1	2013-12-26 20:06:10.620	2013-12-26 20:06:10.6208135	2013-12-26 20:06:10.620	2013-17 0:06:10.620	2 12-26 20:06:10.6. 5-05:00
2	2013-12-26 20:06:10.623	2013-12-26 20:06:10.6268138	2013-12-26 20:06:10.623	2013-1 20:06:10.623	2 12-26 20:06:10.626 -05:00
3	2013-12-26 20:06:10.627	2013-12-26 20:06:10.6278139	2013-12-26 20:06:10.627	2013 5 20:06:10.627	2 2:26 20:06:10.6278 05:00
4	2013-12-26 20:06:10.630	2013-12-26 20:06:10.6328142	2013-12-26 20:06:10.630	2013 6 20:06:10.630	26 20:06:10.6328 05:00
5	2013-12-26 20:06:10.630	2013-12-26 20:06:10.6338142	2013-12-26 20:06:10.630	2013 \$ 20:06:10.630	2 12-26 20:06:10.6338 05:00
6	2013-12-26 20:06:10.633	2013-12-26 20:06:10.6348143	2013-12-26 20:06:10.633	2013-1 20:06:10.633	2013-12-26 20:06:10.634 -05:00
7	2013-12-26 20:06:10.633	2013-12-26 20:06:10.6358143	2013-12-26 20:06:10.633	2013-12 0.06:10.633	2013-12-26 20:06:10.6 3 -05:00
8	2013-12-26 20:06:10.633	2013-12-26 20:06:10.6368144	2013-12-26 20:06:10.633	2013-12-26 10.633	2013-12-26 20:06:1 8144 -05:00
9	2013-12-26 20:06:10.637	2013-12-26 20:06:10.6378145	2013-12-26 20:06:10.637	2013-12-26 20. 97.	2013-12-26-20 6378145-05:00
10	2013-12-26 20:06:10.637	2013-12-26 20:06:10.6388145	2013-12-26 20:06:10.637	2013-12-26 20:06:16	
11	2013-12-26 20:06:10.637	2013-12-26 20:06:10.6398146	2013-12-26 20:06:10.637	2013-12-26 20:06:10.637	2013-12-26 20:06:10.6398146 -05:00
12	2013-12-26 20:06:10.637	2013-12-26 20:06:10.6408146	2013-12-26 20:06:10.640	2013-12-26 20:06:10.640	2013-12-26 20:06:10.6408146 -05:00

Timestamp

#01

#04

#02

#05

discrete relative time

#03

#06

- relative to proton pulse start
- 10 ns resolution, 32 bits likely

Data Rate Estimation

Expected: up to 10⁸ neutron/s detected per instrument (with some uncertainty)

Data Structure

32 Bit pixel id32 Bit timing id - aka timestamp

64 Bit = 8 byte

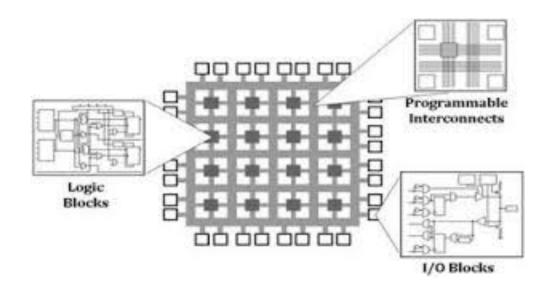
@ 10⁸ 1/s 800 MB/s or approx 1 TB in 20 min

1 Data Frame (1 pulse):

800 MB/s / 14 Hz = 57 MB

- + Proton charge (32 Bit)
- + absolute timestamp

Notes: Average rates will (hopefully) be much lower. Imaging is different.



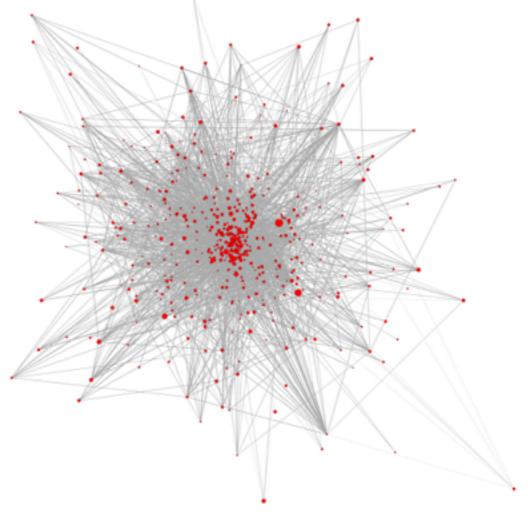
Data Format, Volumes or Rates

If we get more than 64 bits per event...

... how much to we get?

... what format is it in?

EUROPEAN SPALLATION We need to plan!


- network, bandwidth and topology
- develop the right framework
- are we CPU limited?
- I/O limited?
- would GPGPUs make sense?
- would Xeon+FPGAs be an option?

Algorithms - What are those?

- What language are they in?
- What framework do they require?
- What is their life cycle?

EUROPEAN SPALLATION SOURCE

- Who is responsible for them?
- How can we test, accept or reject an algorithm or an implementation ?


```
REELIFAIDA.RA
            NC.NKK
            EAUILOIL
    $(013.01991$.
     ON. SEC. TIE. QUA. QU
'PROCEDURE'LECTURE(L3) & 'REEL''T
                                                 'DEBUT'
  ENTLERIM.K
                 · KI=DONNEE ·
 POUR'NI = O'PAS' I' JUSQUA'K' FAIRE' 'DEBUT'
       L3S(H)SI=DONNEE
FIN' & FIN' o
       UREIMARIE THERESES
          EEL . A. X. ON. RN
              0 0 P := 0 0 L := D0 NNEE 0
               $9X1=(A-ENT(A))×1004
                    IES(P)S'ALORS'CANS(L,N)SI#3
                  SOULS(P)S'ALORS'CANELL.N)SIS
                 XFSIXS(P)S'ALORS'CANE(L,N)E1=6
             CAN$(L.N)$1=70
          40'SI'N>NKK-7'ALORS' ALLER A'ENDES
         N+1+0N1=ENT(N/2)+RN1=N-QN×2+
     'SI'RN=O'ALORS'P:=P+|+'ALLER A'ORG+
ENDE: 'FIN'&
```

Trial Data

- Can we get all the raw data for the uTPC paper?
 We do not care what format that is in!
- Or is there more representative data?
- Will there be?

Timescale: NMX - now?, Other detector types - ASAP

Important Points

- We need well defined interfaces
- Responsibilities need to be clear
- Even software processing costs money
- Budget and therefore scope is limited
- Timescales are crucial BrightnESS has a fixed lifetime

