
Jeff Hill

LANSCE

THE EPICS LUA SCRIPT RECORD

THE EPICS LUA SCRIPT RECORD

– OUTLINE

• Lua, a Brief Introduction (review)

• EPICS Integration of Lua milestones

• Lua Record Goals

• Lua Record Design

• Lua Record Robustness Features

• Data Access Interface to 3rd Party Data

• DBF_VARIENT database type

• Lua Record Pitfalls

• Conclusions

THE EPICS LUA SCRIPT RECORD

– LUA A BRIEF INTRODUCTION (REVIEW)

• Lua embeddable language was created in 1993

• By members of the Computer Graphics Technology Group (Tecgraf) at the Pontifical
Catholic University of Rio de Janeiro, in Brazil.

• "Lua" (pronounced LOO-ah) means "Moon" in Portuguese

• Interpreted, compiled at load-time to byte-code

• A mixture of C-like and Pascal-like syntax

• Dynamic typed, automated conversion between string and numberic types

• Efficient virtual machine execution, small footprint, incremental garbage collection, easily
interfaced with C code

• Liberal MIT license

• Some negatives also, see my talk at Michigan EPICS meeting

• In particular, variables are globally scoped by default

THE EPICS LUA SCRIPT RECORD

– EPICS INTEGRATION OF LUA MILESTONES

• Lua 5.2.3, the current release, embedded inside of EPICS base

• Built by the EPICS build system

• This is the current released version of Lua

• It has the upgraded support for integer primitive types

THE EPICS LUA SCRIPT RECORD

– EPICS INTEGRATION OF LUA MILESTONES

• Lua based subscription filtering in the CA server

• Event queue is order correct

• Based on C++ 11 shared pointer

• Subset of boost included in EPICS base supporting prior compilers

THE EPICS LUA SCRIPT RECORD

– EPICS INTEGRATION OF LUA MILESTONES

• Lua based subscription filtering in the CA server

• Snap-in interface for LANSCE timed-and-flavored subscription filters

• Filters specified as channel name postfix

• Invoking Lua methods supplied when the IOC boots

• Each client attaching to the server

• Instantiates an independent Lua context

THE EPICS LUA SCRIPT RECORD

– EPICS INTEGRATION OF LUA MILESTONES

• Alternative EPICS SHELL

• In contrast, a fully functionality scripting language

• Powerful libraries, built-in and community

• An environment well proven for use in

• Configuration

• Scripting

• Rapid-prototyping

THE EPICS LUA SCRIPT RECORD

– EPICS INTEGRATION OF LUA MILESTONES

• EPICS IOC shell can invoke, and pass arguments to, Lua scripts

• Lua scripts can invoke, and pass arguments to

• Any of the commands registered into EPICS IOC shell

• We can, for example, instantiate records within a Lua for loop

THE EPICS LUA SCRIPT RECORD

– LUA RECORD GOALS

• Currently we have two computational record-level building block components

• EPICS calc record

• Excellent rapid prototyping, but limited functionality

• EPICS subroutine record

• Excellent efficiency, but possibly less popular for rapid prototyping

• A new Lua based record might provide

• Comprehensive functionality set

• A reasonable compromise runtime execution efficiency

• The rapid prototyping we depend on with the calc record

• Runtime changes via CA puts to lua record fields

• And, we hope that the heavy lifting might come for free with Lua

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• Independent Lua context for each Lua record – this is somewhat expensive but …

• They are not making small memory chips any-longer

• Sometimes its best not to share …

• Application specific Lua heap usage has a global impact on performance

• Global variables sharing between Lua records

• Perhaps its just smart to avoid software dark alleys

• We don’t like it when a new Lua record breaks another record that
was installed 10 years ago

• Single threaded access to the Lua state

• No MUTEX locking wrapping of Lua C library calls

• Less runtime overhead

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• Independent Lua context for each Lua record

• Nevertheless, we will need to share some common infrastructure

• Lua tables, function, libraries, class libraries

• A site or application specific assortment of startup scripts is needed

• To initialize each record’s private Lua context

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• The file name of a configuration script is specified by the LUAS field

• This startup scripts initialize the Lua context instantiating supporting

infrastructure

• Instantiating any Lua functions and libraries needed

• Instantiating any Lua data, tables, objects needed

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• The LUAS field specified configuration script runs when

• The record is initialized

• Also whenever a CA client modifies the LUAS field

• The Lua context is destroyed

• A new Lua context is created

• The LUAS field specified configuration script is run
against the new Lua context

• The PACT field is restored to FALSE

• More on this later

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• The LUAE field specifies the Lua equivalent of the CALC

expression

• This expression is executed

• When the record is processed

• Its result is placed in the record’s VAL field

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• The LUAE field expressions are wrapped with a Lua function

• So they can access the lua record’s input fields, passed as input arguments

• "function (a, b, c, d, e, f, g, h, i, j, k, l) return %s; end“

• The expression in the LUAE field is substituted for %s in the quoted string above

• The a, b, c … l are the values of the record’s similarly named input link fields

• Input fields are

• Read each time the record is processed

• Pumped onto the Lua stack

• Become input arguments for the LUAE field’s Lua expression

THE EPICS LUA SCRIPT RECORD

– LUA RECORD DESIGN

• A new Lua expression is compiled by Lua when

• The record initializes

• Also whenever clients modify the LUAE field

• New Lua code causes PACT field restoration

• Set to FALSE

THE EPICS LUA SCRIPT RECORD

– ROBUSTNESS FEATURES

• Lua protected call library function is used

• To invoke the LUAE and the LUAS specified Lua code

• Therefore, Lua exceptions are caught before returning Lua code into C code

• This implies that if a user Lua code throws an uncaught exception

• Then, debug trace back messages are printed on the command line

• Processing of the Lua record is disabled

• PACT field is left in true state

• Effectively disabling the record

• The record is also placed in invalid alarm state

• Therefore, the stack-trace message is printed only once

• CPU is not consumed repetitively running an exception handler

THE EPICS LUA SCRIPT RECORD

– DATA ACCESS INTERFACE TO 3RD PARTY DATA

• Data Access

• A Data Type extension mechanism

• For indexing and traversing 3rd party hierarchical data

• C++ pure virtual base class, and associated support library

• It can be used to interrogate data coming from almost any source

• Comparable to device support, record support, asyn, streams …

• With device support system programmers interface 3rd party devices

• With Data Access system programmers interface 3rd party data sources

• Application developers use newly interfaced data types

• They are not required to know about low level Data Access interfaces

THE EPICS LUA SCRIPT RECORD

– DBF_VARIENT DATABASE TYPE

• DBF_VARIENT type contains three C++ 11 shared_ptr objects

• Pointer to a Data Access Index interface

• Pointer to a Data Access Mutator interface

• Pointer to lifetime management interface

• The DBF_VARIENT type is an extension mechanism for 3 rd party data

• Is uses as the value field of advanced record types

• Lua records are also interfaced to the Data Access Index interface in the DBF_VARIANT

• Using the Lua table index extension mechanism

• Lua can index any of the properties in hierarchical 3 rd party data, for example

• “a.processVariable.alarm.condition.status”

THE EPICS LUA SCRIPT RECORD

– LUA RECORD PITFALLS

• The Lua garbage collector runs incrementally however …

• Your record will run much more efficiently

• If you don’t allocate, and subsequently free, Lua heap resources

• Each time the record is processed

• Use the Lua stack instead to allocate dynamic memory during record processing

• Lua variables are globally scoped by default

THE EPICS LUA SCRIPT RECORD

– CONCLUSION

• Lua embeddable scripting language capabilities have been integrated into EPICS

• CA server event queue filtering

• Lua based IOC shell

• Lua record

• An upgrade for the CALC record

• With a comprehensive feature set provided by Lua!

