

RF Power Station Evaluation FREIA, Uppsala University

Magnus Jobs¹, Rolf Wedberg¹, Roger Ruber¹, ¹) Uppsala University, Physics & Astronomy, FREIA Uppsala University, Uppsala, Sweden

Outline

- Introduction to FREIA Laboratory RF Line
- Tetrode Power Stations
- Power Stations Supplies Evaluation
- Power Stations RF Performance
- SSA Development
- Conclusions

FREIA Uppsala

- UU contribution to the ESS project
- Key goals to validate prototype cavities, cryomodules and RF sources

Safety Interlocks

400kW RF Line

- Two 400kW RF Power Stations
- Main Bulk Outside Bunker
- Coaxial & Waveguide Lines
- Patch-Panels for Rearrangement

FREI

UPPSALA UNIVERSITET Block Schematic

RF Distribution

- 6-1/8" Coaxial Lines
- WR23HH Waveguides
- Multiple Patch-Panels
- ~90% Installed

FRE

- Components used and tested in the RF-chain at FREIA include multiple companies
- The use of high power 400kW pulses often presents new applications for involved companies which means that many components are developed and evaluated in collaboration

400kW RF Stations

- Dual TH595 Per Station
- 400kW Peak at 14 Hz, 3.5ms
- Crowbar & Series Switches
- One Station Commissioned

.

• One Station in SAT

Tetrode Supplies •

Parameters

- First RF Station Commissioned
- Only minor deviations
- Improvements Ongoing
- Initial tests in closed-loop configuration performed

Second RF Station Ongoing

Parameter	Tender Specification	HPA1	HPA2	Station Out		
		352.21	352.21			
Frequency of operation	352.21 MHz	MHz	MHz			
Output power	≥ 175 kW	200 kW	200 kW			
3 dB bandwidth	≥ 250 kHz	≥ 2.5 MHz	≥ 2.5 MHz			
Pulse width	3.5 ms	3.5 ms	3.5 ms			
Frequency of pulses	14 Hz	14 Hz	14 Hz			
Input power from driver	≤ 10 kW	6.0 kW	6.9 kW			
Gain	≥ 14.5 dB	15.6 dB	14.9 dB			
Anode Efficiency	≥ 65 %	65%	60%			
Class of operation	AB	AB	AB			
Harmonics	< -35 dBc			< -40 dBc		
Spurious	< -60 dBc			< -60 dBc		
Linearity ¹	± 0.5 dB	± 1.25 dB	± 1.25 dB	± 1.25 dB		
Gain amp. stability (time >5 μs)	± 1 dB			± 0.3 dB		
				± 1.5		
Gain phase stability (time >5 μs)	± 5degrees			degrees		
Driver Gain ²	≥ 70 dB	69.5 dB	70 dB			
Driver amp. stability (time >5 μ s) ³	± 0.2 dB	± 0.25 dB	± 0.1 dB			
				± 0.5		
Driver Phase Linearity	± 5degrees			degrees		

1: Primarily caused by deviation in linearity in the <50 kW range

2: Controlled by station, could be modified by if required

3: Some minor discrepancy of gain control in HPA1

UPPSALA UNIVERSITET

Wire Test

- Test of Crowbar & Series Switches
- Series Switches are IGBT based
- Series Switches testes w/wo Crowbar
- Short Circuit Wire Filament as defined by Thales datasheet

Series Switches

- Significant ringing
- Caused by SRD capacitances & output lead inductance
- Snubber network across IGBT does not remove this effect
- Flyback 5-diode stack destroyed by 8kV undershoot
- Undershoot can be reduced by the inclusion of snubber network across diode stack
- Proper voltage divider network across diode stack was missing adding to the sensitivity of the design. Proper voltage divider network to be included

Series Switches

- Snubber network added on diode stack
- Undershoot reduced significantly
- Main cause contributed to overly idealistic modeling of network during design stage
- Good correspondence with simulations

- Anode Efficiency Peak ~65%
- Tuned for 400kW operation

• Efficiency Peak ~43%

UPPSALA UNIVERSITET

HPA1

G2 Voltage [V]

Tube Performance

Amp Section A											
Station P. Out [kW]	0	40	80	120	160	200	240	280	320	360	400
Power - In [dBm]		-9,8	-7,8	-6,62	-5,65	-5,02	-4,22	-3,67	-3,08	-2,52	-1,71
Power - FWD [dBm]		1	4,2	5,84	7,02	7,83	8,82	9,51	10,12	10,65	11,08
Power - Out [dBm]		72,8	83,8	77,64	78,82	79,63	80,62	81,31	81,92	82,45	82,88
Gain [dB]		82,6	91,6	84,26	84,47	84,65	84,84	84,98	85	84,97	84,59

- Initial tube performance close to expected
- Some further tuning can be performed
- Tube gain droop need to be adjusted in order not to exceed G1 limitations

Station P. Out [kW]	0	40	80	120	160	200	240	280	320	360	400
I_anode [I]		4,93	6,98	8,66	10,1	11,35	12,55	13,47	14,52	15,87	17,46
V_anode [kV]		16,3	16,28	16,33	16,33	16,38	16,38	16,43	16,43	16,45	16,5
Filament Current [I]		182	182	182	182	182	181	181	181	180	180
Filament Voltage [V]		8	8	8	8	8	8	8	8	8	8
G1 Current [I]		0	0,03	0,15	0,32	0,47	0,63	0,73	0,89	1,13	1,52
G1 Voltage [V]		-216	-216	-217	-217	-218	-219	-219	-220	-221	-222
G2 Current [I]		0,023	0,03	0,072	0,08	0,096	0,117	0,14	0,175	0,24	0,357

910

924

929

934

935

938

942

947

899

902

UPPSALA

Circulators

- **Thermal Detuning** •
- **Thermal Oscillations** .

0

Reflections

"Back of The Envelope" Tube Behavior During Reflections

400kW Load-Pull

- Even with circulators loading effects must be considered
- Thermal and non-linear effects makes measurements an absolute must
- Using a 6-1/8" variable load setup allows for system evaluation and improvements

Solid-State RF **UPPSALA** UNIVERSITET Spot 30.3 °C 0.95 Work is being done in development of higher 150 Refl. T -3.9° Dist 0.2 power solid state amplifiers FOV Atm. T 28.3 1.25 kW Modules 352.21 MHz 22.4 14-11-20 **\$FLIR** Water Cooled 12:25 High Efficiency **Custom Combiners**

•

•

•

•

Conclusions

- First RF station commissioned and in operation at FREIA
- Second RF station currently undergoing on-site acceptance test
- Performance measurement and development of sub-

components undergoing

• Performance measurements of station in full RF line

undergoing and developed to enhance performance

High Power Arcing

UPPSALA UNIVERSITET

- Arcing in transmission lines and flanges
- Arc-Detectors required at multiple locations
- Some arcing is not easily detectable!
- High reflections must be accounted for

Solid-State RF

- SSA power combining technology
- Step 1) $1 \text{ kW} \rightarrow 8 \text{ kW}$
- Step 2) $8 \text{ kW} \rightarrow 96 \text{ kW}$
- Step 3) 96 kW \rightarrow 384 kW
- Low-loss designs are critical

Why Class C?

Frequency MHz	Forward Power Kw	Load Power Kw	VSWR: 1,2 phase°[Y]	DC Anode Voltage Kv	Anode residual Voltage KV	Screen grid voltage V	DC IG2 current	DC Anode current A	Peak anode current	Dissipated anode power Kw	Tube Efficiency	Input Power KW	Nominal anode impedance	R e load impedance	JX Ioad impedance	MAX G2 Power Density W/cm2	Total G2 RF losses W	Total G2 dissipation (G1 si triode)	Peak cathode current density A/cm2
352	202	200	0	16,0	1,8	900	0,48	16,8	57,5	3,2	74,26%	4,97	440,0	528,0	0,0	18,7	594,9	614,8	0,98
352	202	200	45	16,0	2,2	900	0,37	17,4	59,4	3,6	71,98%	5,20	440,0	496,0	64,3	17,9	568,3	583,6	0,99
352	202	200	90	16,0	3,0	900	0,22	18,6	63,6	4,5	67,24%	5,76	440,0	432,8	79,3	15,8	504,0	513,1	1,04
352	202	200	135	16,0	3,9	900	0,15	19,7	67,5	5,3	63,32%	6,32	440,0	383,8	49,8	13,8	439,8	446,0	
352	202	200	180	16,0	4,3	900	0,13	20,2	69,0	5,7	61,89%	6,57	440,0	366,7	0,0	12,9	413,1	418,5	
352	202	200	225	16,0	3,9	900	0,15	19,7	67,5	5,3	63,32%	6,32	440,0	383,8	-49,8	13,8	439,8	446,0	1,09
352	202	200	270	16,0	3,0	900	0,22	18,6	63,6	4,5	67,24%	5,76	440,0	432,8	-79,3	15,8	504,0	513,1	1,04
352	202	200	315	16,0	2,2	900	0,37	17,4	59,4	3,6	71,98%	5,20	440,0	496,0	-64,3	17,9	568,3	583,6	0,99
Phase rotation with constant anode voltage TH 595 ESS																			

FREID