Status and Results from CERN's High-Gradient (SPL) RF Testing Program

Karim Hernandez and Katarzyna Turaj

on behalf of

Alejandro Castilla, Leonel Ferreira, Benoit Frere-Bouniol, Alick Macpherson, Pierre Maesen, Karl-Martin Schirm,

Acknowledgements: Nuria Valverde Alonso, Antoine Benoit, Sauro Bizzaglia, Max Gourragne, Christophe Jarrige, Pablo Fernandez Lopez, Szabina Horvath-Mikulas, Gabriel Pechaud, Francois Pillon, Mathieu Therasse

CERN's High Gradient (SPL) Program: Overview

- Four 5-cell Bulk Niobium β =1 cavities produced in industry
 - Test progam: mid 2014 till present
- Required cavity specifications
 E_{acc} =25 MV/m Q₀=1 x10¹⁰
- Chemistry, preparation & testing:
 - Done entirely at CERN
 - Cold Tests at 2K in vertical cryostat
 - All measurements: CW Operation

SM18 Facilities: Identification of Working Space

Cleanrooms: ISO4 for FPC & HOM Mounting and String Assembly
External rail system: Cryostating of assembled string
Horizontal Bunker: Test of Cryomodule - Power from adjacent zone
Vertical cryostats: V3 & V4 for testing of bare and dressed cavities
Control room: Faraday cage with measurement stands + LLRF

CERN's SM18 facility is becoming increasingly available in 2016

- progress in bare cavity testing
- upgrading of cryomodule testing infrastructure
- Acquisition and validation of cleanroom tooling for cavity handling

CERN's High Gradient (SPL) Program: Results Overview

- Significant progress in achievable cavity performance
 - Preparation & testing process now well understood
 - Opinion: Specification target is now attainable.

Cavity Preparation

Cavity Preparation Process

Chemistry:

- Electro-polishing of 160 um (average)
- Heat treatment: 650 degree for 24hrs
- Light Electro polishing of 20 um (average)
- Degreasing & ultrasonic bath. Cavity double-bagged in N₂ for transport

• HPR at 60 - 100 bar with ultra pure water

- Conductivity >18M Ω /cm TOC_{in} < 10 ppb Water Temperature : 26°C
- Drying: 48 hrs in laminar clean air flow (ISO4 cleanroom)
- Optional: Drying in 100°C nitrogen flush for 20 min
- Cavity Assembly in clean room
 - Done in ISO-4 cleanroom. Pump down within 8 hrs after of assembly
 - Optional: Bakeout at 120°C for 48hrs
- Mounting of cavity on cryostat insert
 - Pumping line connection done in-situ but with in controlled laminar flow

SLHiPP - 23 May 2016

Electro-polishing

- **Observation**: Chemistry on first cavity was **unsatisfactory** and cavity performance was limited by high field emission
 - Triggered redesign of electro-polishing cathode
 - Result: Much improved surface finish for HG2 & HG3

No Pinholes or Grooves

Electro-polishing: Cathode Evolution

• Evolution of the electro-polishing Cathode

Electro polishing: Experience with New Cathode

• HG2: EP with copper mesh cathode.

- Good surface finish, but issue with clogging on cathode
- flakes fall onto cavity => partial etching gives rougher surface

Move to Aluminium cathode => Clogging issue resolved

Thermal Treatment: 650 °C for 24hrs

ဖ

HPR and Contamination Sources

High Pressure Rinsing

• HPR system has now been optimised for performance

High Pressure Water Rinse

Rinsing procedure extended

SLHiPP - 23 May 2016

CERN

- For HG1 -> 8hrs while for HG2 -> ~60 hrs HG2: 1st 7hr HPR
- Water quality carefully monitored
 - Particle count, TOC, Resistivity, pH

Contamination: Observed Debris Scale

Chemical analysis of contamination before/after HPR

- Analysis of particulates by energy dispersive X-ray spectroscopy
- Samples taken from cavity interior, exterior and HPR cabinet
 - Samples taken both before and after HPR

Courtesy: A.T Perez Fontenla

carbon sticker: C(84,6%), O (14,6%), Na (0,4%) &S (0,4%)

Chemical Analysis after poor RF performance of HG2

- Significant impurities inside & outside cavity
 - Dominated by metallic particulate of various sizes
 - Silicon trace detected in HPR cabinet & cavity

- 23 May 2016

SLHipp

- Metallic contamination due to electrostatic pickup
 - Handling process outside HPR/cleanroom not adequate

Main elements	Control after poor Cold test performance				
detected	Cavity interior	Cavity beam port	Cavity exterior	HPR Cabinet	
Fe, Cr, Mn Ni		8	3		
Ca, C, O	1	1			
Si, O		2			
Zr		1			
Ag		3	8		
AI	2	1	3		
Cu			1		
Nb			1		
Pb, Sn	1				
C,O	1				
Ti				2	
Si,Mg,C,O				2	

O(3mm)

Examples of foreign particulate observed

Ti chip Size: O(30um)

Al Flake Size: O(3000um)

Cu chip

Oxidised Iron Size: O(30 um)

Carbon Flake Size: O(400um)

Ag chip Size: O(100 um)

Pb and Sn Size: O(50um)

Silicon Oxide Size: O(50 um)

Chemical analysis after revised cavity handling

Tighter control of cavity & environment prior to HPR

- Minimised electrostatic pickup of metallic debris
- Prior to rinsing: Much reduced contamination observed
 - Cavity interior: Foreign metallic debris suppressed

• After rinsing: RF surface is cleaner

• Residual particulate on entire cavity surface & HPR cabinet

Main elements	Before HPR		After HPR	
detected	Cavity	HPR	Cavity	HPR
C, Cl, Ca, S, O	2	1	2	2
Fe, Cr, Mn, Ni, S, C	5	-	2	6
Cu,Zn,O	1	-	-	-
Ca,S,O,C	-	6	-	-
Si,O	1	-	-	-
Si, Al, Na, Ca, K	-	4	1	2
Ag	-	-	3	3
Al	1	-	-	-
Fe,O	-	-	-	2
Nb	1	-	-	-
S,C	-	-	-	1

Cavity Test Results

Passband Frequencies

• 1/5 π mode

- Simulated (2K)
- Measured (4.5K)
- Measured (1.8K)
- Measured (300K +vacuum)
- Measured (300K + 1 Bar)

• 2/5 π mode

- Simulated (2K)
- Measured (4.5K)
- Measured (1.8K)
- Measured (300K +vacuum)
- Measured (300K + 1 Bar)

• 3/5 π mode

- Simulated (2K)
- Measured (4.5K)
- Measured (1.8K)
- Measured (300K +vacuum)
- Measured (300K + 1 Bar)

• 4/5 π mode

- Simulated (2K)
- Measured (4.5K)
- Measured (1.8K)
- Measured (300K +vacuum)
- Measured (300K + 1 Bar)

• π mode

- Simulated (2K)
- Measured (4.5K)
- Measured (1.8K)
- Measured (300K +vacuum)
- Measured (300K + 1 Bar)

HG1	HG2		
692.470 MHz	692.470 MHz		
692.062 MHz			
692.293 MHz			
691.235 MHz	691.164 MHz		
691.109 MHz	691.083MHz		
695.696 MHz	695.696 MHz		
695.277 MHz			
695.500 MHz			
694.454 MHz	694.439 MHz		
694.325 MHz	694.351 MHz		
699.756 MHz	699.756 MHz		
699.464 MHz			
699.382 MHz	699.734 MHz		
698.627 MHz	698.567 MHz		
698.505 MHz	698.490 MHz		
703.107 MHz	703.107 MHz		
702.773 MHz	-		
702.992 MHz	703.169 MHz		
701.391 MHz	701.995 MHz		
701.797 MHz	701.917 MHz		
704.408 MHz	704.408 MHz		
704.219 MHz	704.358 MHz		
704.432 MHz	704.508 MHz		
703.359 MHz	703.321 MHz		
703.215 MHz	703.249 MHz		

Evolution of Cavity Performance

Comparison of HG 1 & HG2

Improved performance correlated with reduced field emission

Comparison of HG1 and HG2

- Field emission dominated HG1 but was reduced for HG2
 - Onset clearly seen in coupling of input power
- HG2 field emission starts at ~14 MV/m
- Objective: push field omission onset above 18MV/m
 - reduce surface contamination with cleanroom tooling
 - Systematic inspection of RF surface to assess chemistry

Performance Comparison of HG1 & HG2

- Cavity 'Dark Current' = DC current on pickup antenna
- HG1: Dark current correlated with field emission

<u>May 2016</u>

23

SLHipp

- Observed beam port flange heating from accelerated electrons
- HG2: No dark current correlation with field emission

=> either HG2 antenna not exposed to accelerated electrons or HG1 & HG2 have different high field quench mechanisms

Present Performance Limitations: HG2

• TESLA cavity design: Risks multipactor @Epk ~45 MV/m

Observation:

- Processing with amplitude modulation is slow but possible
- Processing difficult due to thermal runaway/quenching
 - Cause for optimism to process through the barrier

Lorentz Force detuning

Cavity deformation from radiation pressure

 $\Rightarrow \Delta f \propto E^2_{acc}$

- Measured value ~ 1/2 expected value
 - Need to reconsider cavity support and anti-collapse system

Processing in the $4/5 \pi$ Mode

- Use different passband modes for cavity processing
 - Difficult to couple in power
 - Gives coarse localisation of field emitters

Planning and things to address

Quench Studies

• Detection & analysis of 2nd sound waves in superfluid Helium

- Quench spot localisation by triangulation of at least 3 sensors
- HG1: Mid-field Quench
 - Localisation & identification of quench spot

- HG2: High-field Quench
 - No consistent localisation
 => Suggests global quench

Cleanroom Activities: Where we need to improve

- Full cavity handling tooling not yet in place
 - Cavity handling robots being assessed/procured
 - Antenna mounting is 100% manual
- Post HPR Drying is with ISO4 vertical laminar flow
 - Possibility of adding drying step of 100°C N_2 flush

Optical test bench

• Present system - Developed at KEK:

- Manual Operation: Full HG inspection => 300000 pictures
- System is specific to 704MHz elliptical cavities

- Upgraded Optical Bench
 - Dual high/low resolution system
 - Able to accommodate variety of cavities (LHC, Crab, HG)
 - Required resolution ~5µm
 - Automated image acquisition and image analysis
 - Two systems under consideration
 - JLAB styled long distance microscope (<u>www.questarcorporation.com</u>)
 - Chromatic Confocal sensing for depth profile (<u>www.stil.com</u>)

SLHipp

- 23 May 2016

Cryostat Insert upgrade

Upgrades being implemented

- New insert frame with possibility to electrically isolate cavity from cryostat
 - => control/monitor thermal-electric currents
- Mobile coupler for operating in 2K LHe
- Ambient B-field compensation: below 30 nT
- Residual Gas analyser on cavity vacuum line

Ambient magnetic field & Cool down

Spatial thermal gradient

Operationally: Can be controlled or eliminated

Ambient Magnetic Field

- Use compensation coils to control/set ambient B-field
 - Standard Operation: B-field set at 30nT
- Flux expulsion observed at T_c transition

New insert + full control of thermal gradients & ambient B-fields => can study cavity performance factors due to cool down procedure & thermal electric currents

Planning: High Gradient Activities

- High Gradient Cavity Cold tests: Push toward specifications
 - Interleaved with other CERN SRF projects (eg HL-LHC Crabs)

ERN