

Status of CIADS Project

Yuan He

On behalf of ADS Team

Institute of Modern Physics, CAS

`o-**@**-%

ANDS Project, Ywan He, SILHAPP-6, Daresbury, UK, May. 23rd , 2016

Motivation and Roadmap

- Specifications and Challenge of CIADS
- Design Conception of Driven Linac
- Design Conception of Spallation Target
- Progress of Demo Facility
- Summary

Nuclear Power Development in China

- Nuclear energy is an inevitable strategic option to meet China energy demand in the future
 - China is the largest energy consumer in the world and coal is the major resource for electricity production (79% in 2011)
 - China claim that the CO₂ emissions will reach a peak around 2030 while Paris Climate Agreement.
 - Nuclear power is a relatively clean energy without green-house gas emission

• Current status of China nuclear power

- 22 nuclear power reactors in operation, 18.056GWe (6th in the world)
- Produced electricity: 104.8TW.h, 2.1% share in 2013, (5th in the world)
- 27 reactors under construction, 26.756GWe, (1st in the world)
- The planned NP development in China (2011-2020)
 - By 2015, the installed capacity reaches 40GWe and 18GWe under construction
 - By 2020, the installed nuclear capacity will be increased to 58GWe (~7%), and 30GWe are under construction

By 2050, 350~400GWe (~20%), comparable with the total NP capacity in the world (375GWe in 2014).

- Management and safe disposal of nuclear waste
- Fuel supply (Uranium~100 years for LWR)
- Inherent safety

"The ADS has the advantage that it can burn pure minor actinides while avoiding a deterioration of the core safety characteristics." — ADS and FR in Advanced Nuclear Fuel Cycles – A Comparative Study, NEA/ OECD, 2002

Global distribution of Uranium resources (Uranium 2014)

Accelerator Driven Sub-critical Reactor and Accelerator Driven Recycle of Used Fuel are promising path to resolve the problems.

ADS/ADANES Roadmap in China

Status of CIAINS Project, Y. He, SILHUPP-6, Daresbury, UIK, May. 23rd , 2016

China Initiative Accelerator Driven System (CIADS)

- Approved in Dec. 2015, CD0
- Leading institute: IMP

Proton LINAC:

~600 MeV

10 mA with

CW mode

- Budget: >1.8B CNY (Gov. and Corp.)
- Location: Huizhou, Guangdong Prov.
- **Contribution Partners: IHEP, CASHIPS, CIAE, CGN**

Spallation Target granular flow >2.5 MW

- **Sub-critical core:**
 - LBE coolant
 - <10 MWt

Plan of CIADS Project

Status of CIAINS Project, Y. He, SILHUPP-6, Daresbury, UIK, May. 23rd , 2016

Motivation and Roadmap

- Specifications and Challenge of CIADS
- Design Conception of Driven Linac
- Design Conception of Spallation Target
- Progress of Facility
- Summary

Layout of subcritical reactor

👹 😤 - Stat

Status of CIAINS Project, Y. He, SILHiPP-6, Daresbury, UK, May. 23rd , 2016

Selection of top level specifications

To different enrichment fuel, there is optimized beam energy if the total power of driven accelerator and sub-critical reactor is fixed. At around 550 MeV, the facility cost is independent of fuel enrichment and lowest.

Selection of Top level specifications

sub-critical reactor core (61 rods in each fuel unit)

the dark ones are fuel-units and green ones are dumb-units. It takes the driven beam of 600 MeV. The beam current is reduced with fuel enrichment rapidly. The enrichment of 19.75% is a better value.

Selection of Top level specifications

1 layer fuel unit, enrichment 19.75%

sub-critical reactor core (61 rods in each fuel unit)

Top level specifications:

Sub Reactor:fuel enrichment 19.75%, one layer with 18 units, power 7.14 MWtDriven Linac:beam energy 600 MeV, current 4.78 mA, power 2.86 MWtTarget:sustained power ~2.5 MWt

First high power, CW beam, full SC proton accelerator Highest CW beam power 6 MW, 10mA/CW@600MeV

(2.3mA@600MeV, PSI; 1.0mA@1GeV, SNS; 2.5mA@2GeV, ESS)

First Sub-critical Core with LBE coolant

No sub-critical nuclear reactor is operated with power by now

High power spallation target

Highest power 6MW towards industrial scale (PSI, SNS: ~1.4MW; ESS will be 5MW; Industrial need >10MW)

First integrated Accelerator Driven Sub-critical Reactor System

physic's and engineering issues of interaction of three systems (low energy, low current beam coupled experiment)

CIADS will be the first platform to investigate the issues on construction and operation, Long-term R&D is necessary.

- Motivation and Roadmap
- Specifications and Challenge of CIADS
- Design Conception of Driven Linac
- Design Conception of Spallation Target
- Progress of Demo Facility
- Summary

Design conception of driven linac

- Room temperature front-end (the most important part)
 - Ion source: dual, hot spare, higher frequency (14 GHz)
 - LEBT: bending H2+ H3+, trans. collimation, matching, fast chop
 - RFQ: small long. acceptance, lower frequency, compromise
 - MEBT: insulation of RT to SC, enough diagnostics, additional collimation
- Superconducting Linac (one injector)
 - beta selection: less cavity, minimize RF power, moderate gradient
 - failure compensation: 25% overhead, whole linac
- HEBT and coupling
 - chromatic aberration
 - trans. collimation: smaller acceptance than referential segment
 - Iong. collimation?
 - raster or crossover scanning?

LEBT design

LQ SN D-box SN RFQ

scrap the outer particles with large radius and angle

- Good beam quality through spot-source scraping
- Remove H₂⁺ and H₃⁺ by bending magnet in case of losing in RFQ

Simulation of spot-source collimation

Cavity Family					
Cavity Type	HWR	Spoke	Ellip		
Frequency(MHz)	162.5	325	650		
Gap Number	2	3	5		
Epeak(MV/m)	25/32	32	35		

Variable: Geometric beta

Algorithm:

Particle Swarm Optimization

Constraints:

TTF continuous Energy gain continuous

Objective:

Cavity number Normalization power

Input energy: 2.1 MeV Output energy: 1.5 GeV

Status of CLAWS Project, Y. He, SLHüPP-6, Daresbury, UK, May. 23rd , 2016

Two options for CIADS

	Number	Cav1	Cav2	Cav3	Cav4	Cav5	Cav6	
Optimized for 600MeV d-spoke	164	0.09	0.19	0.36	0.63			Beta _{opt}
		0.76	0.15	0.33	0.58			Betag
		162.5	162.5	325	325			Frequency
		140	279	460	811			L (mm)
		0.526	1.1	2.71	6.09			Vacc(MV)
		3.73	3.96	5.89	7.51			Eacc(MV/m)
		7.25	29.24	117.77	600			Energy _{out}
Optimized for 1.5 GeV Cut at 600MeV	148	0.10	0.15	0.30	0.42	0.62	0.82	Beta _{opt}
		162.5	162.5	325	325	650	650	Frequency
		2	2	2	3	5	5	Gaps
		166	240	387	533	690	922	L (mm)
		0.84	1.59	2.90	4.39	7.65	12.92	Vmax(MV)
		0.63	1.19	2.18	3.29	5.74	9.69	Vacc(MV/m)
		3.77	4.98	5.63	6.18	8.32	10.50	Eacc (MV/m)
		4.2	17.0	59.3	154.3	336.8	600	Energy _{out}

Status of CIAINS Project, Y. He, SILHüPP-6, Daresbury, UK, May. 23rd , 2016

Two options of lattice for 600MeV

Section	HWR I	HWR II	HWR III	Spoke I	Ellip I	Ellip II
Betaopt	0.10	0.15	0.30	0.42	0.62	0.82
Frequency (MHz)	162.5	162.5	325	325	650	650

Status of CILAUNS Project, Y. He, SILHUPP-6, Daresbury, UIK, May. 23rd , 2016

Design conception of HEBT IMP

with

Status of CLAWS Project, Y. He, SLHüPP-6, Daresbury, UK, May. 23rd, 2016

15

5

3

2

0

-1

-2

-3

-4

-5

-6

15

End to end simulation (RFQ to Target)

Initial 4 sigma/t and 5 sigma/L distribution, rms emittance growth 75%, no loss

End to end simulation with RFQ output

Particles distribution exit from present RFQ, long. loss happens at frequency jump, final trans. loss. Small long. acceptance of RFQ will be helpful.

ect, Y. He, SILHAPP-6, Daresbury, UK, May. 23rd, 2016

25

Status of CIAWS Project, Y. He, SILHiPP-6, Daresbury, UK, May. 23rd , 2016

26

- Motivation and Roadmap
- Specifications and Challenge of CIADS
- Design Conception of Driven Linac
- Design Conception of Spallation Target
- Progress of Demo Facility
- Summary

Granular Target Conception

Sand Clock

Time proportional to the outflow of the sand shows the stability of the granular flow.

- In principle, it can stands for tens of MW beam power
- Increasing flexibility to use other target materials to increase the neutron yields

Example Scale Simulation with EDM

250 350 450 550 600 700 1000 1500(MeV)

Granular: tungsten alloy, diameter=280mm, mass_flux=233kg/s, speed=0.5m/s Beam: diameter=50mm, current=10mA, uniform distribution in 3D, CW

Eayout of granular target and reactor

State

alus of CILAIDS Project, Y. He, SILHAPP-6, Daresbury, UK, May. 23rd, 2016

Test platform of granular target

Challenge of granular target:

- corrosion and erosion
- lifting
- heat exchange with water

- reduce the highest temp.
- clean dust
- radiation damage
- fluid detection

- Motivation and Roadmap
- Specifications and Challenge of CIADS
- Design Conception of Driven Linac
- Design Conception of Spallation Target
- Progress of Demo Facility
- Summary

Demo facility of C-ADS at Lanzhou

Beam: 25 MeV, 10 mA, CW, 250 kW Target: tungsten granular, windowless, vacuum differential Lifter: mechanical

Status of CILAUSS Project, Y. He, SILHUPP-6, Daresbury, UIK, May. 23rd , 2016

Commissioning of Spoke linac at IHEP

- Beam duty factor: 2‰ (2Hz/1ms)
- CM 1 output energy with 7 cavities : Eout=6MeV
- CM1 transmission: 100%
- RFQ+CM1 transmission: 88.4%
- Output current: 10.6mA

of CLAINS Project, Y. He, SLHUPP-6, Daresbury, UK, May. 23rd , 2016

Commissioning of HWR linac at IMP

- June 6, 2015, 5.2MeV, 10.2mA, pulse; 5.3MeV/2.7mA/CW/14kW;
- Nov. 28, 2015, 4.6MeV/4mA/CW/18kW/40min;
- Jan. 2, 2016, 4MeV/1.7mA/CW/6.8kW, 450min;

history record of 4.6MeV/4mA/CW/40min

Summary of operation of HWR linac

Operation 2014.06.06 - 2016.01.15				
	total beam time (hours)	CW (hours)		
RFQ- 2.1 MeV	1390	59	837h in 2014	
TCM1- 2.5 MeV	208	22	Removed on April 27, 2015	
TCM6- 5 MeV	400	20	To Mainten on Jan. 15, 2016	

More details on beam commissioning will be presented by Dr. Zhijun Wang and Weiping Dou tomorrow.

- Motivation and Roadmap
- Specifications and Challenge of CIADS
- Design Conception of Driven Linac
- Design Conception of Spallation Target
- Progress of Demo Facility
- Summary

- CIADS was approved in Dec. 2015.
- The top level parameters of CIADS has been updated.
- The design optimization of driven linac is on going. A code base on PSO was developed.
- The granular target will be employed to sustain 6 MW beam power. The V&V platform is under construction and will be ready by the year.
- The demo facility including 25 MeV linac and granular target is constructing at IMP. The 5MeV/4mA/CW beam has been proved at IMP. The 25 MeV will couple with granular target in 2017.

Prof. Wenlong Zhan, CAS Dr. Hushan Xu, IMP Dr. Weimin Pan, IHEP Dr. Lei Yang, IMP Dr. Xueyin Zhang, IMP Dr. Long Gu, IMP Dr. Zhijun Wang, IMP Dr. Huan Jia, IMP Dr. Fang Yan, IHEP Dr. Yongmin Li, IMP Ms. Shuhui Liu, IMP Ms. Yue Tao, IMP Mr. Weilong Chen, IMP Mr. Yuanshuai Qin, IMP

• 0 4

Thanks for your attention

Thanks for the helps

from LBNL, J-Lab, TRIUMF, ANL, MSU/FRIB, ORNL, FNAL, RIKEN, CEA/Saclay, IPN/Orsay, IAP, KEK,

HIT, PKU, SINAP,.....

Welcome Collaboration!

Status of CIAIDS Project, Y. IIIe, SILIIIIPP-6, Daresbury, UIK, May. 23rd , 2016