

HOM Couplers for CERN SPL Cavities

K. Papke, F. Gerick, U. van Rienen

Work supported by the Wolfgang-Gentner-Programme of the Bundesministerium für Bildung und Forschung (BMBF)

23-05-2016

SLHiPP-6 2016 - Daresbury

Introduction

 HOM-Coupler used to extract or dissipate unwanted, higher order modes in the cavity induced by the beam

Design goal of HOM filter: block the transmission of the accelerating mode, while transmitting HOMs, which have significant (R/Q) values with Qext ≤ 10⁵ ^[1]

O. Capatina, SPL Seminar 2012

Outline

- Cavity Mode Sensitivity
- Tests of HOM coupler prototypes
- Heat Loss Investigations
- Multipacting
- Summary & Outlook

Cavity Mode Sensitivity ^[3]

- Single cell plastic deformations (~1.5 mm) and subsequent retuning yield residual HOM frequency shifts of up to several 10s of kHz
- Frequency shift is not always systematic
- Due to large frequency shift during cool-down (> 1MHz), shifting of HOMs via single cell detuning/retuning is probably not precise enough to displace single HOMs away from machine lines

SLHiPP-6 2016 - Daresbury

Monopole modes			Dipole modes		
Туре	Freq [MHz]	R/Q [Ω]	Туре	Freq [MHz]	R/Q [Ω]
TM ₀₁₀ π	704.4	566	TE ₁₁₁ 3/5π	918	57
TM ₀₁₁ 4/5π	1322	39	TE ₁₁₁ 4/5π	943	60
TM ₀₁₁ π	1331	140	TM ₁₁₀ 3/5π	1014	36
TM ₀₂₁	2087	10	TM ₁₁₀ 4/5π	1020	25
TM ₀₂₁	2090	21	Hybrid	1409	20
TM ₀₂₂ π	2449	9			

Traditio et Innovatio

Design approaches and prototype choice

- Single notch designs easier to fabricate but they are more sensitive and have a lower selectivity
- Hook designs have a better coupling to dipole modes/ Probe designs better for monopole modes
- Notch filter of the TESLA design nicely tunable but design is not reasonable for SPL cavity

Design approaches and prototype choice

Transmission behavior optimized according to the HOM spectrum of the cavity by adjusting all design parameters

Design approaches and prototype choice

- 3D-prints of the PROBE V3 and HOOK V3 (copper coating)
- PROBE V3 solid prototype made of copper

- Dimensional control of the notch plate:
 - Tolerance of the couplers: ±0.2 mm
 - Surface roughness test of a 3D-print: 0.24 mm
 - Gap distance of notch filter of solid prototype slightly out of tolerance (+0.246 mm), however adjusted by bending

Mechanical Design by T. Renaglia, F. Pillon, N. Alonso Dimensional control of the solid prototype by D. Pugnat

- RF Transmission tests on a copper SPL cavity
 - S21 parameter in good agreement with the simulations
 - Rotatable flange allows fine tuning of gap distance

HOOK V3

S21 and Qext measurements at warm

- Q external measurements for different coupler orientations with respect to the beam line
 - Program was written to simplify the evaluation of measurements (~80 modes, ~1000 data sets/ coupler)
 - Uses complex pole fitting algorithm to extract resonance frequency and bandwidth ^[4,5]

- Q external measurements for different coupler orientation with respect to the beam line
 - Coupling factor measured directly over S11 and over reference antenna
 - Preferable positions: 30 deg for PROBE V3 and 0 deg for HOOK V3
 - HOOK V3 shows for most of the selected HOMs lower Qext

 $\beta_{hom} = \frac{1 \pm S_{11}}{1 \mp S_{11}}$

- Thermal Contraction
 - How much detuning of the notch filter at room temperature would be necessary to achieve the aimed behaviour at cold?

- Investigation of the robustness of the HOM couplers
- Contraction and RF simulations combined in Ansys APDL
- Different materials of flange and coupler yield stresses that have notable effect on the resonance shift (gap distance varies)
- For experimental tests, a coaxial transmission line was fabricated
- Test facility is also used for leakage tests and later high power tests

- Thermal Contraction
 - At 77 K more than 90 % of the maximum contraction is done
 - Liquid nitrogen used to cool down the coupler mounted on the cross
 - Agreement between simulations and measurements within 10 %
 - assuming only copper in the simulation, the error would rise to 50 %
 - According to simulation, a Nb coupler would have a negative f-shift

SLHiPP-6 2016 - Daresbury

Traditio et Innovatio

Heat Loss Investigation

- Universität Rostock
- Power dissipation caused by accelerating mode yields moderate heat loss in the lower mW range

- Power dissipation due to HOMs to be expected in the same order
- Thermalisation at the fixations increase the allowable maximum surface resistance by a factor of 2
- no active cooling by liquid helium inside the antenna foreseen
- Hook design shows a better thermal behavior
- Integration in the cryo modul for the next year is in progress

Multipacting

Costock

- Solid prototype mounted on the test facility (Cross) simulated with track3p (ace3p) and CST PIC solver
- Different materials to classify hard and soft barriers
- Multipacting at 704.4 MHz
 - Resonant particles found at impact energies between 20 80 eV
 which corresponds to 500-5000 W input power for the cross and 50-500 kV/m accelerating gradient
 - No indications for an exponential increase, rather the particle are dying out slowly

23-05-2016

SLHiPP-6 2016 - Daresbury

Multipacting

- Multipacting at higher frequencies
 - At 943 MHz (TE₁₁₁ pi-mode), resonance at 25 -35 W input power (comparable to an energy level inside the cavity which is 6 orders of magnitude lower than the one of the accelerating mode)

- Concave shape of the central capacitor should be removed to avoid potential MP which appears for both, copper and niobium
- At 1.33 GHz (TM₀₁₁ modes), behavior is similar for the upper capacitor at lower input power (6-25 W)
- Central capacitor at 1.33 GHz shows a wide range for resonant trajectories: 1–5 kW

Summary and Outlook

- After calibration all prototypes have shown a correct RF transmission
 - Solid prototype required a little mechanical correction (bending)
 - Rotational flange allows fine tuning of the notch frequency
 - No vacuum leaks observed
- Measured Qext for the selected HOMs below 2e5 if at least one hook coupler is used (hook design seems to be a bit better)
- Shift of the notch resonances during cool-down experimentally verified
 Double notch filter very robust against contraction
- Multipacting studies have not shown any problematic regions
 - Small changes will be considered for the next version
- Plans for integration of one coupler inside the cryo module initiated
- High-power tests with the current solid prototype will start soon
- Mechanical design for a niobium prototype could start in June

Thank you for your attention

[1] M.Schuh, "Study of Higher Order Modes in Superconducting Accelerating Structures for Linac Applications", PhD thesis, 2011.

[2] M.Schuh, F. Gerigk. "Influence of higher order modes on the beam stability in the high power superconducting proton linac", Phys. Rev. ST Accel. Beams, 2011.

[3] K.Papke et. al., "Mode sensitivity analysis of 704.4 MHz SC RF cavities", MOPB078, SFR 2013, 2013.

[4] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by Vector Fitting", IEEE Trans. Power Delivery, vol. 14, no. 3, 1999.

[5] P. Reinhold. "Duplication of the Fast Relaxed Vector-Fitting algorithm in python", URL: https://github.com/PhilReinhold/vectfit_python

- For SPL dipole HOMs are considered less problematic
- In case of recirculators or synchrotrons should be also considered
- Design goal for relevant HOMs: **Qext < 10**⁵
- HOM spectra for the medium and high beta Cavities:

Monopole Coupling

SLHiPP-6 2016 - Daresbury

Prototypes

- As the 1st Prototype the Probe Coupler (V3) with 3 stages was chosen
 - Notch filter with a relative high bandwidth (135 MHz @-100dB) and therefore very robust
 - High selectivity (steep transition between stop band and or notch filter and pass band)
 - Best coupling to the monopole HOMs at 1.3GHz.
 - No active cooling of the antenna necessary.

