

Beam commissioning activities at demo facility of C-ADS Injector II

C-ADS Injector Demo Facility

Zhijun Wang Institute of Modern Physics, CAS@Lanzhou 6th Open Collaboration Meeting on Superconducting Linacs for High Power Proton Beam Daresbury, UK, May 23-24, 2016

2

>Introduction of the beam commissioning progress

- Commissioning Issues for the C-ADS injector
- ➢Summary and outlook
- Acknowledge

Commissioning Schedule of C-ADS injector

Beam commissioning of 162.5MHz CW RFQADS

- June 6th,2014, the first beam, energy is 2.15 MeV
- June 30th, 2014,10 mA, CW beam, 4.5 hours, beam power 21.6 kW
- July 18th-19th, 2014, tested and peer reviewed by CAS
- Total operation time is ~1000 hours including CW@10mA around 10 hours
- Record of non-trip operation is ~220 hours

IIIIIP

Beam commissioning of 162.5MHz CW RFQADS

June 30th, 2014, Beam is CW. The current jumped from ~5 mA to ~10 mA, kept for 4.5 hours. Ion source arcing is the main trips and caused the AMP shutdown finally.

2、Beam commissioning of MEBT&TCM1

D-Box

TCM1

MEBT

RFO

ECRIS+LEBT+RFQ+MEBT+TCM1+D-Plate ~2.5 MeV at 10 mA

Energy measurement : BPM1-DP, BPM3-DP, Time of flight Energy measurement: Slit2, deflection dipole, FC4 Beam current measurement: DCCT-DP, ACCT2 Transmission efficiency measurement: DCCT-DP, ACCT2

LEBT

ECRIS

- Oct. 1st, 2014, first beam from TCM1, 2.6 MeV, 2.3 mA, Transmission ~100%
- Nov.25th, MEBT and TCM (HWR010) operated at 2.67MeV@CW mode around 6 hours. The max current was 3.6 mA and beam power >9.6 kW.
- Feb. 5th, 2015, 2.51MeV/4.2-10.83mA/72m, Feb. 13rd, 2.55MeV/~11mA/60m。
- Hours on Nov. 27th. Total operation time was ~ 200 hours.

2、Beam commissioning of MEBT&TCM1

TANP

Beam commissioning of TCM6

June 6th, 2015, pulse beam 99us@1Hz, 5.2MeV, 10.2mA June 24th, 2015, 5.3MeV/2.7mA/CW/14kW Dec 27th, 2015,4.6MeV/4mA/CW/40min; 4.6MeV/3mA/CW/50min Jan 2th, 2016, 4MeV/1.7mA/CW/6.8kW, CW 7.5 h

3. Beam commissioning of TCM6 CADS

TEXTP

- Beam loss control
- Beam loading effect for RFQ
- Beam loss detection
- Beam parameters measurement
- Machine accident for MPS failed and HCE

- Beam loading effect of RFQ with 10mA proton beam
- > Beam tuning of RFQ for high beam power linac
- Benchmark between simulation and experiential results
- BBA experiments
- Beam loss control and detection
- 6D-emittance measurements with no-interceptive BPMs

Beam loading effect of RFQ cavity

TAND

Beam loading effect of RFQ cavity

-Box

TCM1

MEBT

13

LEBT

TANT

The temperature of RFQ cavity cooling water is tuned manually to decrease the reflection RF power caused by beam loading!

RFO

Beam tuning of RFQ for high beam power lina

1 NO

Benchmark between simulation and experiential results

TANP

The accurate beam parameters from RFQ cavity by multi measurements!

xc (3.96032003095868

BBA experiments- Quads

THATP

BBA experiments- SC solenoids

TANTE

6th Open Collaboration Meeting on Superconducting Linacs for High Power Proton Beams, Daresbury, UK May, 24, 2016

Beam loss detection by the temperature sense and the sense

1 AND

No-interceptive diagnostics-BPMs

1 AND

The 6-D Twiss parameters can be calculated by scanning technology.

No-interceptive diagnostics-BPMs

- □ Multi-Q scanning
- □ Small beam size inside the BPM
- Benchmarked with silt + wire scanner method
- The longitudinal emittance is under study

	BPM	Wires	Δ(%)
α_x	0.146	0.302	52
β_x(m)	0.212	0.22	3.6
E_x(mmmrad)	0.294	0.286	2.8
α_γ	-0.397	-0.102	289
β_y(m)	0.141	0.121	5.0
E_y(mmmrad)	0.306	0.297	3.0

Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project (NIMA)

20

- RFQ with CW 10mA, stability still on the way.
- Transverse emittance has been studied carefully to avoid beam loss form mismatch, longitudinal is the point next step.
- BBA experiments has been carried out to avoid beam loss form beam displacement.
- The temperature sensor has been applied to detect the beam loss for SC linac.
- 6D-emittance measurements with no-interceptive BPM is proposed and the transverse implemented

LINTP

