

PAUL SCHERRER INSTITUT

Peter Keller Mechanical and Electrical Engineering Paul Scherrer Institut

Shielding of EIGER-Monochromator production

DENIM

ESS - Lund – Sweden 19-21 September 2016

1.Introduction 2.Project aim **3.Shielding materials** 4.15 T magnet use **5.**Concrete pieces 6.Lead shielding 7.Tungsten parts 8.Beam trap 9.Assembly **10.Summary**

picture by courtesy of C.Kägi

Introduction Project aim 15 T magnet Shielding Summary Concrete Lead Tungsten Beam trap Assembly materials use pieces shielding parts

EIGER is a triple axis instrument which belongs to the permanent spallation source SINQ at the Paul Scherrer Institute in Switzerland. The monochromator sit within a thermal beam-channel.

□ Neutron flux of SINQ: 10¹⁴ n/cm²/s

□ very fast neutrons > 1 MeV

Parameters Properties of EIGER

	compor	ent	K	orop	erties		va	lues		
	monochroma	ator	d p e	louble f lieces F ach	ocusing 15x9 PG 20x20mm) 1 ²	Alignment: <+/-0.1° 30° mosaicity			
	virtual source	9	1	10mm <width<40mm< td=""><td></td><td></td></width<40mm<>						
	shielding		n	non-magnetic						
	beam size a	sample	d	double focusing condition				40mm		
R	filter		P	PG (37 or 70mm)						
	analyser			PG horizontal focusing						
	detector		3	³ He-tube						
	collimation		2	20', 40' or 80' available						
	usable magr	net	1	5 Tesla	a vertical					
	A2-stage			worm gear			17° - 90°			
Shielding materials	15 T magnet use	Concrete pieces	Le shie	ead Iding	Tungsten parts	Beam ti	ар	Assembly	Summary	

picture by courtesy of C.Kägi

Project aim

Introduction

The aims were:

Design of a shielding which stops a major amount of the fast neutrons

□ The process of choosing the part-materials should take care about the future plans to use of a 15 Tesla sample magnet.

Good signal to noise ratio

pictures by courtesy of C.Kägi

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

Shielding materials

- used major shielding materials:
- lead
- tungsten
- L tungsten/paraffin
- stainless steel
- □ carbon steel
- \square borated heavy concrete (unmagnetisable) \rightarrow main shielding

Concrete

pieces

Lead

shielding

Tungsten

parts

□ borated heavy concrete (magnetisable)

15 T magnet

use

- borated light concrete
- borated aluminium
- borated stainless steel
- $\hfill\square$ borated paraffin

Project aim

Introduction

- \rightarrow main shielding
- \rightarrow slits
- \rightarrow direct beam
- \rightarrow casings
- \rightarrow casings
- \rightarrow main shielding
- \rightarrow top and bottom shielding

Assembly

- \rightarrow scattered beam
- \rightarrow to shim gaps
- \rightarrow main shielding

Beam trap

Summary

by courtesy of D.Graf

Force from the magnet to the sample table items

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

During the project prices of stainless steel increased much.

- >We simulated all major pieces in case of their magnetically force.
- By observing the magnetically force on the sample table we choose partly carbon steel instead of stainless steel.
- Result was a mixture of pieces made of magnetisable and unmagnetisable materials.

COMSOL-simulation figures by courtesy of L.Holitzner

Concrete pieces

Specification target was:

- □ density higher then 5.0 Kg/dm³
- □ 5% boron carbide (2.5 Kg/dm³)
- unmagnetisable

steel casing

birchwood

machining on

the final piece

we studied following heavy concrete compositions

pictures by courtesy of D.Graf

Beam trap

- □ Magnetite (Fe_3O_4); density of 5.2 Kg/dm³
- □ Hematite (Fe₂O₃); density of 5.3 Kg/dm³
- □ Barite (BaSO₄); density of 4.5 Kg/dm³

IntroductionProject aimShielding
materials15 T magnet
useConcreteLeadTungstenpiecesshielding
shielding

Assembly Summary

Concrete pieces

Specification:

- □ density up to 5.3 Kg/dm³
- □ 5% boron carbide
- □ stainless steel grains
- □ steel casings

steel grains during pouring

stainless steel

stainless steel grains (surface blasting)

pictures by courtesy of D.Graf

carbon steel

instead of sand we used boron carbide

IntroductionProject aimShielding
materials15 T magnet
useConcrete
piecesLeadTungstenBeam trap
partsAssemblySummary

pictures by courtesy of D.Graf

pictures by courtesy of D.Graf

lead borated lead paraffin

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

Specification tungsten/paraffin

- □ tungsten powder mesh 100 400 micron
- □ paraffin granulate (used by candle-maker)
- □ mixture 60% tungsten (weight %)
- □ density 11.6 Kg/dm³

pictures by courtesy of C.Kägi

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

Specification solid tungsten

T

1

CATIA-model by courtesy of D.Graf

- Densimet D180
- □ sintered tungsten
- □ 95% tungsten
- rest FeNi
- density 18 Kg/dm³

picture by courtesy of C.Kägi

solid tungsten block

0

pictures by courtesy of C.Kägi

neutron guide, sapphire filter & shutter

Starting with a flat base plate

- □ putting the base plate straight
- □ metrology checking
- D pouring concrete underneath

unaccesable crane areas balances

□ special hangers

gallery

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

Picture by courtesy of C.Kägi

	Planar Deviation Summary:	Radial Deviation Summary:	
Minimal:	-0.806	-0.116	[mm]
Maximal:	0.748	0.220	[mm]
Range:	1.555	0.336	[mm]
RMS:	0.517	0.066	[mm]

figures by courtesy of K.Dreyer

Measured tolerances of the wormwheel base on the shielding were not okay!

video by courtesy of C.Kägi

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

During the process of material-choosing and production we learned much about shielding-building technics.

Specially the various material optimising and development took us much more time as suspected.

Steel casings are relatively expensive and do not provide the believed flatness and tolerances.

Finally measurements of radiation showed us values as simulated. Magnetic forces on the sample-kryomagnet were also close to the calculated numbers.

Introduction	Project aim	Shielding	15 T magnet	Concrete	Lead	Tungsten	Beam trap	Assembly	Summary
		materials	use	pieces	shielding	parts			

Wir schaffen Wissen – heute für morgen

My thanks go to

- Dieter Graf; PSI; design shielding
- Alex Bollhalder; PSI; design monochromator
- Christian Kägi; PSI; assembly
- Karsten Dreyer; PSI; metrology
- Lothar Holitzner; PSI; simulation magnet field
- Uwe Filges; PSI; simulation radiation shielding
- Uwe Stuhr: PSI; instrument responsible
- Severian Gvasaliya; ETHZ; former instrument respons.
- Henrik Rønnow; EPFL; former instrument responsible

Providing main companies:

- Hinneburg; production lead & steel
- Alphabeton; production concrete
- Wissel & Wissner GmbH; special machining

Wir schaffen Wissen – heute für morgen

