

DENIM 2016

Maria @ FRM2 an EMI survey

Sep 2016 | G. Vehres

Outline

- Causal study
- Basics / Equipment
- Approach
- Results
- Conclusions
- Todo

Maria @ FRM2

Quelle: Forschungsneutronenquelle Heinz Maier Leibnitz W.Schürmann

MARIA: Magnetic reflectometer with high incident angle

DENIM 2016

Causal study

- He3 polarisation disturbed (depolarisation)
- Interference at the detector system He3 (MWPC)
- Proof of concept "zoneconcept"
- Part of the measurement campaign at the neutron guide hall west @FRM2

Basics / Equipment

Measurement of tethered interferences

- -Measure leak current
- Determination of the fundamental frequencys using an high frequency capable current probe and a digital oszilloscope
 Insulation tests

Test equipotential bonding / grounding system –Four wire tests using a transformer

JÜLICH FORSCHUNGSZENTRUM

Basics

Current through vacuum hose ~ 6mA (30kHz)

Two pumps Each supply from different feed. One within this lab, one from a neigborhood lab 25m extension cord

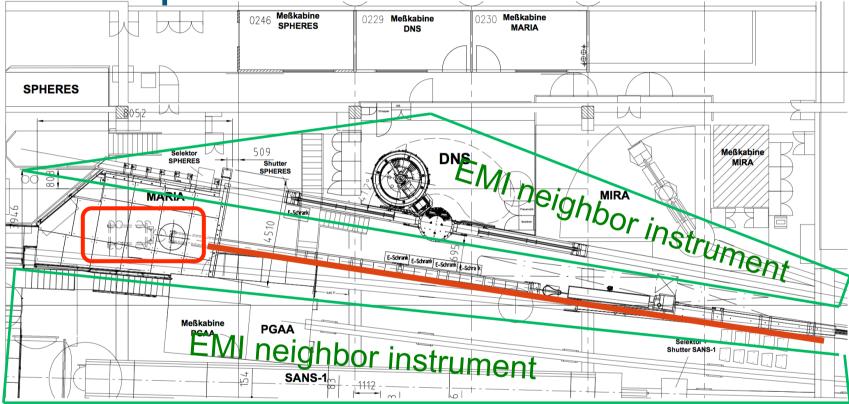
DENIM 2016

September 2016

Folie 6

Basics

Current through network cable ~ 5mA


System connected to a switch next floor using 30m shielded Network cable.

DENIM 2016

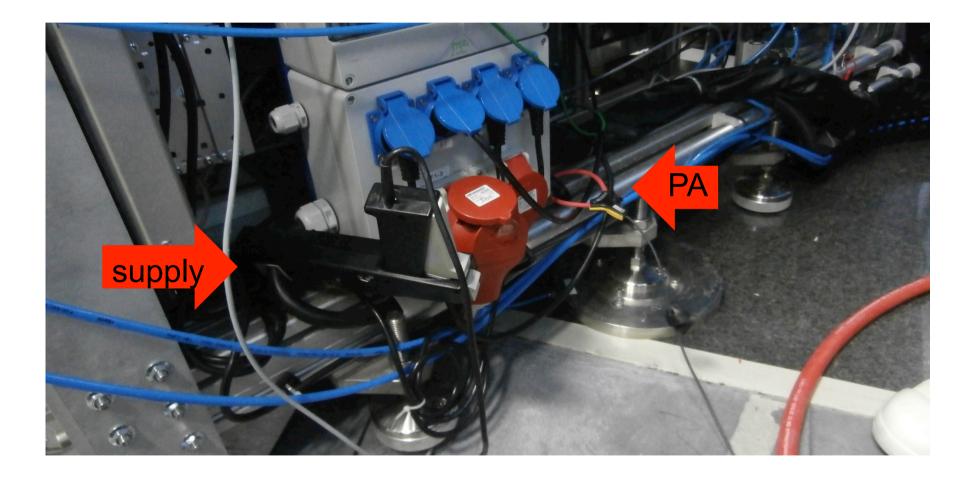
Zoneconcept

Each instrument is idefined as separate zone! At the border of the zone all supply should be combined on a small grounded plate, use isolation if possible!

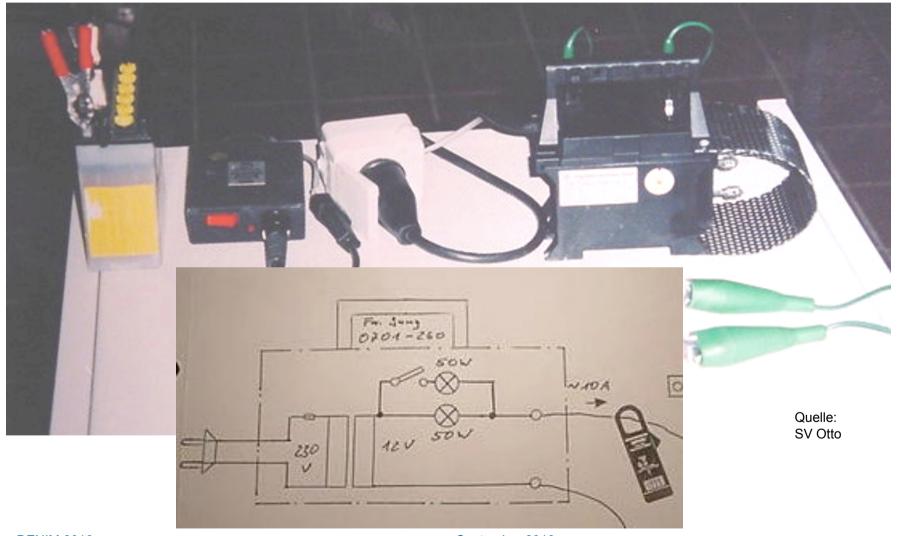
DENIM 2016

Approach

- 1) Determination of fundamental frequencys
- Within the supply line to power distibution secondary spectrometer
- Within the supply lines for the He3 polarisation / detector
- Within the supply lines one motor on secondary spectrometer
- At the potential equalization point of secondary spectrometer
- At the potential equalization point of Hexapodsystem
- 2) Determination of the resistance between the main instruments potential equalization point and parts of the instruments using a 4 wire method



Measuring leak currents



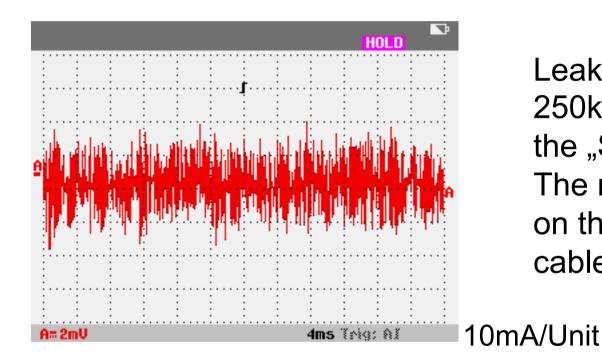
Measuring frequencys using HF probes

4 wire method

Results

Supplied from power distribution of the secondary spectrometer

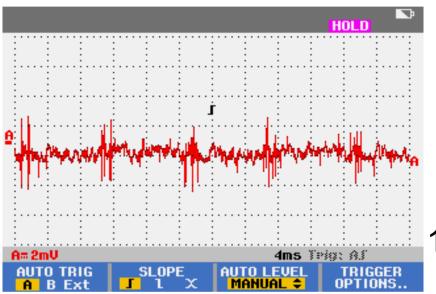
- He3 polarisation
- Detector system


Leakcurrent measured at supply line / potential equalisation cable

- All loads connected 62mA / 50mA
 total L1-L2-L3-N = residual current 4,2mA
- Detector system disconnected 56mA / 40mA
- Everything unpluged 0mA / 12mA

There is a current measureable without a load connected !! Educated guess: the currents is conducted from the ground wire of the power cable to the potential equalisation cable. This current ist conducted through our equipment!!!!!!

Detector system



Leak current main frequency 250kHz on the supply line of the "Siemens" rack. The measured current depends on the position of the ribbon cables

Guess: a ribbon cable is damaged and strikes the rack / ground Insulation fault! The detector is no more isolated!

Friction wheel / Hexapod

Discontinuous interference measured at the motor cable of the friction wheel

10mA/Unit(20mA) 4ms/Unit

Guess: A Loop is created!!

The motor cable supplying the friction wheel is screened but also includes a ground wire. Both are connected to the equalisation point of the hexapod control unit (at the primary spectrometer). The motor itself is mounted on the secondary spectromenter without insulation. **DENIM 2016** September 2016 Folie 15

Hexapod / friction wheel

First Try: Disconnect potential equalisation cable to degrade contact. Higher impedance of electric loop?!

- Degrade of potential equalisation cable is not allowed!
 Danger of electric shock.
- Metall (conducting) connection through mounting system between sample position and secondary spectrometer.
- Several ground wires within cables DENIM 2016 September 2016

Results of resistance measurements

With respect to the equipotential bus bar we measured

Description	Resistance/mΩ (10E-3) Ω	Comment
Kasemattenwand	13,7	Vermascht mit PA?
Selektor-Schrank	142,8	Über Versorgung geerdet
Verschraubung T- Träger	9,2	Metallische Verbindung
IVS Schrank PE-Schiene	3,2	Sehr gut angebunden
Hexapod ohne PA	14,5	Erdung geschwächt
Hexapod mit PA	6,6	
Detektorelektronik	68,8	Nur über USV angebunden
Kabeltrasse Nachbarinstrument	9,4	Vermaschung der Instrumente!

conclusions

- All instruments are interconnected and influence each other.
- Metallic constructions within the instruments (low impedance) also promote spreading of current.
- Zoning concept: "Each instrument is a zone" is not feasible in the neutron guide hall west.
- The secondary spectromenter must be considered as a zone, which may be subdevided.

Todo

- Dividing an instrument into zones.
- The secondary spectrometer is considered as a zone containing zones for detector, beamstop and polarisation.
- The zones must be electrical isolated, take special care of unintended metallic connections
- Optimise cable management for lower EMI impact.
- Chose / Build isolations that aviod unintended connections

Contributor

- Dr. Peter Göttlicher (Desy)
- Dr. Stefan Mattauch (JCNS)
- Ulrich Bünten (JCNS-1)
- Vladimier Ossovy (JCNS)
- Andreas Nebel (JCNS)
- Abt. G-ELI (Forschungszentrum Jülich)
- Dr. Nikolas Arend (JCNS)

Thanks to all collaborators.