Science Requirements to Engineering Specifications Workshop

DENIM 2016
20 September, 2016

What We Did

- For the first half of the workshop, there were high level presentations discussing the methods for developing Science Requirements into Engineering Specifications are done at ORNL, and LLB
- David Anderson discussed the Critical Decision path required by the US DOE for large, capital projects, then discussed the development flow for smaller work using eMOD
- Sylvain Desert gave a high level talk about requirements development at LLB
- Patrice Permingeat, LLB gave a talk about selecting the best solution
- Sergei Klimko, LLB gave a talk about specification development optimization software

David Anderson, SNS

- SNS based on Department of energy model.
- CD0-CD5 (CD stands for Critical Decision) CD0 Approved mission, CD5 End of project, typically 5 years
- CD2 Conceptual design review
- Small projects goes through eMod up to 100k dollars, engineering process software.
- Scientific productivity process for scientific proposals
- Musts and optionals are shown in the CD1.
- Questions from Group:
- How do you plan staff?
- The work is limited to the number of staff not the other way around
- Priorities are crucial

Sylvain Desert, LLB

- Important to have basic scientific knowledge
- Set scope, validate millstones, give advice
- Lead scientist should not be part of the steering committee
- 1. Define project, here it is important to have a scientific understanding
- Scientists stays scientist
- 2. Bibliography, benchmarking
- . Brainstorming
- 4. Choose best solution
- 5. Prototyping, CAD, McStas etc.
-6. Test and evaluation, when relevant
- 7. Feedback, "scientist forgot to say", he wanted something different
- 8. Redesign and iterations
- No questionnaires etc to get the req. from scientists.
- Lead engineer is involved in all instrument projects
- Tool: Equity, Precision, a mathematical and statistical tool to find the right concept

Patrice Permingeat, LLB

- Pairwise Comparison method used at LLB to choose a solution among others
- Could also be used for athletic tournaments

Sergei Klimko, LLB

- Parameter optimisation of a coil
- ModeFrontier software, can be linked with CAD, McStas, FEA, CAE.
- Comparison of theory and reality.

Phase 2

- We broke up into 4 subgroups, and each identified 5 or 6 problems we all experience developing Science Requirements into Engineering Specifications
- We returned to the large group, and compared the results from the 4 subgroups, and produced 1 single list of the top 5 problems associated with developing Science Requirements into Engineering Specifications
- We went back to the subgroups, and independently proposed solutions to the 5 problems
- Back as the large group again, we discovered that all 4 subgroups had the same answer for the top 3 problems, 4 different solutions for problem \#4, and ran out of time before discussing problem 5

Summary Group exercise

- Problem 1: Scope creep
- Solution: Change management process
- Problem 2: Cultural differences
- Solution: Classes, meetings, informal chats
- Problem 3: Unnecessary / unreasonable specifications
- Solution: Explanation of consequences, peer review
- Problem 4: Prescribed solution from scientist
- Solution: No agreement
- Problem 5: Lack of decision making
- Solution:

Subgroup 1 Discussion and Solutionsno prionity (dilliwat bo seifertes)

- to strong godes (resulotiom, tolerance...)
$\Theta_{(\text {of }+m)}^{\text {late }}$ dhinge requests
-Cong diuation rom firt idees (scienniat) to poite of decision
- no balance between budget and tedrntical solution
- incumplet renirments resaion ing to enimen (proctioal arpeo
maintomanceimpored recitication by sciel

Subgroup 2 Problems and Solutions

Subgroup 3 Discussion and Solutions

Brainstorming

- Deg. too limiting
- Lack of knowledge of scimee (engineer)
- Balmcirg requinments,
- Change of head scientist.
- Sciumitst dossít agree wilt nu w bars
feature creep
- No respect for different phases ot the project. - Unwritten - Standard products not used, be flexible on - Close minored insincurs! dolisus, - Unneeded eng. rep.

- Lack of understanding of regulatory.
- Time Quality cost triangle is not lenown by scimtists.
- Sci. does not understand thermal stability
- Assumptions
- Reality vs ideas \leftarrow
- Orerconstraining (too mange requirements)
- Detaileel req. without explanaition
- Heritages of ideas, hand to accept new ideace

Unsafe req. Le. req.

- Lack of understanding of regulatory.
Scientist are used to loose rules.
Solutions
Change req. - Steering rommitee, project owner chedulel Meetings to present cultural diff. (Interaction, bivechef a author Understand science and explain eng. imaleaction, coffee brits). understand spare. implications. - Use ens. tael: to hath dec. mating.

Subgroup 3 Solutions

Group 4 Discussion and Solutions

Communctation,

- Propere conmicention Plan
- Definatiar al asponjesities
- mspectiny and gordwill

Scope

- stang tecmicial

MANAGENENT

- communication plat (Buyint/amita)
- gllight chavze cantrol

Solutions

- Risk mpr. plan - Solvĩider v.s. REQ.
- I. DOC as functional AuD
Z.DOC IS ING. SPEC.

Large Group Problem Statements, plus 3 Solutions

$$
\begin{aligned}
& \text { SCOPE CREEP } \\
& \text { DOCUMENTED HIGH LEVEL SFE } \\
& \text { CHANGE PROCEDURE } \\
& G \text { IMPACT ON PGRFORMANE } \\
& \text { SUDDET } \\
& \text { SCHEDULE } \\
& \text { UNREASONABLE SPEC } \\
& \text { DIALOGUE BETWEEN SCIENTIST \& } \\
& \text { ENGINETR } \\
& \text { PEER/INDEPENDANT REVIEW } \\
& \text { PRESCRIBED SOLUTIONS } \\
& \text { DIALOGUE- REASONS FOR } \\
& \text { SOLUTIDN }
\end{aligned}
$$

LACK OF DECISION MAKING ASSIGNINE
$=$

