

Concrete Research by Neutron Radiography

N.Toropovs, Institute of Materials and Structures, Riga Technical University

Basic theories

Quantities of relevance:

- Temperature
- Pore pressure
- Moisture transport

Combination of vapour pressure and thermal dilation

Experiments at NEUTRA, PSI Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures

Fig. 2. Neutron and x-ray scattering cross-sections compared. Note that neutrons penetrate through AI much better than x rays do, yet are strongly scattered by hydrogen.

Source: NIST 2003

The NEUTRA beamline at PSI, combined neutron and X-ray radiography, a – neutron beam collimator; b –sample stage; c –detector.

ESS Latvian Partner Day 02.06.2016

3)

Indication of problem

Mindeguia, 2010

Tunnel element from the Great Bealt tunnel fire tested at SP Technical Research Institute of Sweden.

Channel Tunnel

Mont Blanc tunnel

Channel Tunnel

After testing in the laboratory, sometimes, you have to indicate the area of spalling, in real life it can be much more obvious

What to expect

Much more safer explosion inside open Neutron beam

Spalling by Neutron radiography

Non-spalling sample Spalling sample PP+SAP SAP 20 20 5 min 5 min 10 min 10 min 15 min 15 min 15 15 20 min 20 min 24 min 24 min T = 213°C Height [mm] Height [mm] T = 212°C 10 10 T = 262°C Spalling depth T = 269°C 5 5 T = 327°C T = 323°C 0L -4 а b 2 -3 -2 -1 0 3 -4 -3 -2 -1 0 1 2 3 Water loss Δd_{w} [mm] Water loss Δd_{u} [mm]

Water loss profiles (expressed as equivalent thickness) of the lower 20 mm of the mortar slab: a) PP+SAP sample (no spalling); b) SAP sample (spalling occurred after 24 min at 6 mm height). Estimated temperatures at 24 minutes are indicated for characteristic points of the profile.

Neutron radiography combined with temperature and pressure measurements proves to be a useful method in following the processes that lead to spalling during fire

Thank you for attention! Questions?

