<u>The European Spallation Source ERIC</u> (ESS) - Partner Day in Riga

Potential of Latvian Contribution

Anatoli Popov

Institute of Solid State Physics, University of Latvia, Riga, Latvia

Current realities for Latvian Scientific and Industrial Community:

1. Do we have enough interest in the construction phase?

2. Do we have enough researchers to use the ESS facility?

3 Are we doing enough research in the field that ESS will provide its unique powerfull instruments?

Current realities for Latvian Scientific and Industrial Community:

What should we do to get the best outcome of the expected deal between Latvia and ESS ?

At what stage of ESS, the Latvian Research Community should get involve?

A) At the construction phase?

B) At the User side?

Why Large Scale Facilities?

- Synchrotron & Neutron radiation beamlines are highperformance instruments that allow to obtain multi-scale and multi-task researches on materials of industrial as well as fundamental interest.
- ILL Grenoble, France
- LLB Saclay, France
- **ESRF** Grenoble, France
- FRM II Munich, Germany
- PSI Villigen, Switzerland
- **DESY** Hamburg, Germany
- XFEL Hamburg, Germany
- ELETTRA Trieste, Italy
- DAFNE Frascati, Italy

etc

Great opportunities for small countries

Material	Large Scale Facility	Year	Type of experiment
ZnO	ESRF	2004	XEOL
ReO3	ESRF	2005	EXAFS
Ge (isotopes)	ESRF	2006	EXAFS
ZnO nano	ESRF	2006	XANES, XEOL
ZnWO4 nano	ESRF	2007	XANES, XEOL
ZnNiWO4	HASYLAB/DESY	2009	EXAFS
NiO	HASYLAB/DESY	2010	EXAFS
ReRAM	HASYLAB/DESY	2010	EXAFS
MnWO4	HASYLAB/DESY	2011	EXAFS
ReRAM	HASYLAB/DESY	2011	EXAFS
CuWO4	HASYLAB/DESY	2011	EXAFS
ReRAM	ESRF	2011	EXAFS/XANES
ScF3	ELETTRA	2011	EXAFS
SrTiO3	HASYLAB/DESY	2012	EXAFS
Cu3N	HASYLAB/DESY	2012	EXAFS
ReRAM	HASYLAB/DESY	2012	EXAFS
SrTiO3 (isotopes)	ESRF	2012	EXAFS
NiWO4	SOLEIL	2012	FTIR
ZnNiWO4	SOLEIL	2012	FTIR
SnWO4, CoCuWO4	SOLEIL	2013	FTIR
ODS steels	ELETTRA	2013	EXAFS/XANES
ODS steels	ELETTRA	2014	EXAFS/XANES
CuMoO4	ELETTRA	2015	EXAFS/XANES
SnWO4 HP	SOLEIL	2014	FTIR
SnWO4 HP	SOLEIL	2014	EXAFS/XANES
Cu3N HP	SOLEIL	2014	XANES
CuO HP	SOLEIL	2015	XANES
ODS steels	SOLEIL	2015	EXAFS/XANES
ODS steels	ESRF	2015	EXAFS/XANES
EuTiO3, CH3NH3PbX3	CLAES-ALBA	2015	EXAFS/XANES
CuO nano	HASYLAB/DESY	2016	EXAFS/XANES

Number of projects before 2010: 6 Number of projects starting from 2010: 24 Special thanks to A. Kuzmin

14.40, 2 June 2016

Anatoli POPOV

at Academic Center for Natural Sciences, University of Latvia

Material	Large Scale Facility	Year	Type of experiment
AlN	LNF Frascati	2005	FTIR, XANES
AlN nano	LNF Frascati	2006	FTIR
AlN nano	ILL Grenoble	2006	INS, PD
CdI2	LNF Frascati	2007	FTIR
CsPbCl nano	LNF Frascati	2008	FTIR
SiC nano	LNF Frascati	2009	FTIR
Ag2CdI4	LNF Frascati	2009	FTIR
CdCoS	LNF Frascati	2010	FTIR, XANES
LaPO4 nano	HASYLAB/DESY	2010	VUV
NiWO4	HASYLAB/DESY	2010	VUV
LaCl3:Eu3+	HASYLAB/DESY	2010	VUV
SrI2:Eu	HASYLAB/DESY	2010	VUV
YVO4	HASYLAB/DESY	2011	VUV
PLZT	HASYLAB/DESY	2011	VUV
SrTiO3	HASYLAB/DESY	2011	VUV
ScF3	HASYLAB/DESY	2011	VUV
SrTiO3	HASYLAB/DESY	2012	VUV
CsBr	HASYLAB/DESY	2012	VUV
BaZrO3-Y	HASYLAB/DESY	2012	VUV
HAP	HASYLAB/DESY	2012	VUV
BaZrO3-Y	LNF Frascati	2015	FTIR VIIV S
Ge_GaS_glasses	LNF Frascati	2015	FTIR

SINBAD facility (the synchrotron radiation IR beamline at DAFNE, Frascati, Italy)

/ Superlumi beamline (DESY), Hamburg

14.40, 2 June 2016

Anatoli POPOV

at Academic Center for Natural Sciences, University of Latvia

First Baltic School on Application of Neutron and Synchrotron Radiation in Solid State Physics and Material Science

(BSANS-2012)

Riga, Latvia, 1-4, October, 2012

ILL and ESRF, Grenoble, France

Institute of Laue-Langevin: ILL is funded and managed by France, Germany and the United Kingdom, in partnership with <u>11 other countries</u>.

ESRF (Europen Synchrotron Radiation Facility)

ESRF owes its success to the international cooperation of 21 partner nations, of which 13 are Members and 8 are Scientific Associates.

Note that we have quite limited number of experiments at ILL and ESRF because Latvia is not a member and officially we are not eligible

Nuclear research reactor of Institute of Physics Latvian SSR Academy of Science

The reactor was started up on September 26, 1961. Since 1979 thermal power was 5 MW. 10 horizontal and 17 vertical channels were employed in experimental research with using of neutron fluxes. Until, 1998.

Main fields of investigations:

Nuclear spectroscopy;
Solid state physics;
Radiation materials science;
Neutron-activation analysis.

Latvian neutron user community

- 1. Institute of Solid State physics, University of Latvia
- 2. Institute of Physical Energetics, Riga, Latvia
- 3. Riga Technical University, Institute of Materials and Structures
- 4. Institute of Physics of University of Latvia, (Salaspils-team)
- 5 Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia (Zellu-team)

Latvian neutron user community

- 1. Institute of Solid State physics, University of Latvia
- 2. Institute of Physical Energetics, Riga, Latvia
- 3. Riga Technical University, Institute of Materials and Structures
- 4. Institute of Physics of University of Latvia, (Salaspils-team)
- 5 Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia (Zellu-team)

If neutron-induced radiation damage phenomena as a topic is also included:

6. Institute of Chemical Physics, University of Latvia (Gunta Kizane team)

May be: It is the basis for the future National Large Scale Facility (neutron+synhrotron) research program(s) ???

Latvian neutron user community

1. Institute of Solid State physics, University of Latvia

a) Magnetic Structure

Early View publication on www.wileyonlinelibrary.com Online (issue and page numbers not yet assigned; Library citable using Digital Object Identifier - DOI)

Phys. Status Solidi B. 1-8 (2016) / DOI 10.1002/pssb.201552680

Neutron diffraction study of microstructural and magnetic effects in fine particle NiO powders

A. M. Balagurov¹, I. A. Bobrikov^{*,1}, S. V. Sumnikov¹, V. Yu. Yushankhai², J. Grabis³, A. Kuzmin⁴, N. Mironova-Ulmane⁴, and I. Sildos⁵

¹ Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, RU-14 1980 Dubna, Russian Federation ²Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ³Institute of Inorganic Chemistry, Riga Technical University, Miera Street 34, LV-2169 Salaspils, Latvia ⁴Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia ⁵Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia

Received 24 October 2015, revised 17 February 2016, accepted 25 February 2016 Published online 21 March 2016

Keywords core-shell model, crystal structure, magnetic structure, neutron diffraction, NiO, submicron particles

*Corresponding author: e-mail bobrikov@nf.jinr.ru, Phone: +7-49621-65580, Fax: +7-49621-65484 URL: http://www.jinr.ru/ (L. A. Bobrikov)

Nickel oxide powders with grain sizes ranging from 100 to to a complete separation of the nuclear and magnetic peaks in 1500 nm have been studied by high-resolution neutron the neutron diffraction patterns. It is shown that the finite-size diffraction. We have found that the atomic structure, the and surface disorder effects in particles at the submicron scale antiferromagnetic ordering, and the value of the nickel have a more pronounced influence on the magnetism than on magnetic moments inherent in the bulk material of NiO are their structural properties. We conclude that the core-shell still preserved and are nearly independent of the average size model suggested earlier for nanosized particles can be of the grains. The sizes of the coherently scattering atomic successfully extended to particles whose sizes are in the and magnetic domains were estimated independently owing submicron range.

The neutron diffraction measurements at high resolution Fourier diffractometer (HRFD), at the IBR-2 pulsed reactor in JINR (Dubna).

14.40, 2 June 2016

Anatoli POPOV

at Academic Center for Natural Sciences, University of Latvia

Latvian neutron user community

1. Institute of Solid State physics, University of Latvia

b) Combined neutron and synchrotron studies

Journal of Physics and Chemistry of Solids 69 (2008) 2187-2190

Short- and long-range order in $La_{1-x}Sr_xCoO_3$ and $La_{1-x}Ba_xCoO_3$

E. Efimova^a, V. Efimov^{a,b,*}, D. Karpinsky^c, A. Kuzmin^d, J. Purans^d, V. Sikolenko^{a,e}, S. Tiutiunnikov^a, I. Troyanchuk^c, E. Welter^f, D. Zajac^{f,g}, V. Simkin^a, A. Sazonov^{c,h}

* Ioint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russian Federation Kurchatov Center for Synchrotron Radiation and Nanotechnology, 123182 Moscow, Russian Federation ^c Joint Institute of Solid State and Semiconductor Physics, NASB, 220072 Minsk, Belarus ⁴ Institute of Solid State Physics, University of Latvia, 8 Kengarga Street, LV-1063 Riga, Latvia ^e Berlin Neutron Scatterig Center, HMI, Glienicker Street, 100, Berlin D-14109, Germany ¹Hamburger Synchrotronstablungslabor DESY Notkestrasse 85 D-22603 Hamburg Germany ¹ Institute of Crystallography, RWTH, Jaegerstr. 17-19, D-52066 Aachen, Germany

ARTICLE INFO ABSTRACT Keywords: The short- and long-range order correlations of the crystal structure in the distorted perovskites Local structure $La_{1_x}Sr_xCoO_3$ and $La_{1_x}Ba_xCoO_3$ ($0.0 \le x \le 0.5$) have been studied by the neutron powder diffraction Atomic correlations (NPD) and the Co K-edge X-ray absorption spectroscopy (XAS) measurements. The results of XAS and Cobaltates EXAFS and XANES NPD indicate a local distortion around the Co^{3+} ions in LaCoO₃ at room temperature. The substitution of the La³⁺ ions by the Sr²⁺(Ba²⁺) ions leads to a gradual increase of the Co–O–Co angle and is accompanied Neutron diffraction by an increase of the mean square relative displacement (MSRD) of the Co-O bond. These results correlate with an increase of the oxygen amplitude vibration in the direction perpendicular to the Co-O bond. The possible explanation of the observed changes of the crystal and electronic structures in the

above-mentioned cobaltites is discussed

Available online at www.sciencedirect.com ScienceDirect

www.elsevier.com/locate/nima

Nuclear Instruments and Methods in Physics Research A 575 (2007) 176-179

XAFS and neutron diffraction study of $La_{1-x}Sr_xCo_{1-y}Nb_yO_3$

V.V. Efimov^{a,*}, E. Efimova^a, D. Karpinsky^b, D.I. Kochubey^c, V. Kriventsov^c, A. Kuzmin^d, S. Molodtsov^e, V. Sikolenko^{a,f}, J. Purans^g, S. Tiutiunnikov^a, I.O. Troyanchuk^b, A.N. Shmakov^c, D. Vyalikh^e

^a Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980, Moscow Region, Russia ^bInstitute of Solid State and Semiconductor Physics, 220072 Minsk, Belarus ^cBoreskov Institute of Catalysis, Lavrentiev prosp. 5, Novosibirsk 630090, Russia ^dInstitute of Solid State Physics, Kenaaraga Str. 8, LV-1063 Riga, Latvia ^eInstitut für Kristalloaraphie und Festkörperphysik (IKFP), Zellescher Wea 16, Physikaebäude C 115, 01069 Dresden, Germany ^fHahn-Meitner-Institut Glienicker Str. 100. Berlin D-14109. Germany ⁸Dipartimento di Fisica, Universita'di Trento, Via Sommarive 14, I-38050 Povo (Trento), Italy

The neutron powder diffraction experiments were carried out using the fine resolution neutron diffractometer E9 at the BER-II reactor in Hahn Meitner Institute (Berlin) XAS measurements were performed on the Russian–German beamline at the BESSY II (Berlin)

Latvian neutron user community

1. Institute of Solid State physics, University of Latvia

 $\begin{array}{c} nm \\ 1.0 \\ 0.4 \\ 0 \end{array}$

Neutron characterization of aluminium nitride nanotubes

S. BELLUCCI^{†*}, C. BALASUBRAMANIAN[†], A. IVANOV[‡], A. POPOV[‡] and H. SCHOBER[±]

Journal of Neutron Research, Vol. 14, No. 4, December 2006, 287-291

c) nanomaterials

Inelastic neutron scattering at ILL IN4, IN6 and D20 at ILL

Latvian neutron user community

1. Institute of Solid State physics, University of Latvia

ELSEVIER

d) nuclear science

Nuclear Physics A 947 (2016) 76-126

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/nuclphysa

Levels of ¹⁸⁸Re nucleus populated in thermal neutron capture reaction

J. Bērziņš^a, T. Krasta^{a,*}, L. Simonova^a, M. Balodis^a, V. Bondarenko^a, M. Jentschel^b, W. Urban^c, I. Tomandl^d

^a Institute of Solid State Physics, University of Latvia, LV-1063, Riga, Latvia
 ^b Institute Laue–Langevin, F-38042, Grenoble, France
 ^c Faculty of Physics, University of Warsaw, 00-681, Warsaw, Poland
 ^d Nuclear Physics Institute, CZ-25068, Řež, Czech Republic

Received 24 September 2015; received in revised form 17 December 2015; accepted 17 December 2015

Available online 29 December 2015

Abstract

Levels of ¹⁸⁸Re populated in thermal neutron capture reaction with enriched ¹⁸⁷Re targets have been studied. Single γ -ray spectrum of ¹⁸⁸Re, measured with the high-resolution crystal diffraction spectrometer GAMS5, as well as $\gamma\gamma$ -coincidence experiments performed with high efficiency Ge detectors, allowed to develop model-independent level scheme of the doubly-odd ¹⁸⁸Re nucleus up to ~1.5 MeV excitation energy. Analysis of the established ¹⁸⁸Re level scheme in terms of the quasiparticle-plus-rotor model indicates coexistence of axially-deformed and triaxial structures in the energy range above 400 keV. © 2015 Elsevier B.V. All rights reserved.

Latvian neutron user community

1. Institute of Solid State physics, University of Latvia

e) detector physics and development

ARTICLE IN PRESS

Optical Materials xxx (2016) xxx-xxx

Photostimulated luminescence properties of neutron image plates

A.I. Popov^{a,b,*}, J. Zimmermann^{c,d}, G.J. McIntyre^e, C. Wilkinson^b

^a Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, Riga LV-1063, Latvia

^b Institut Laue-Langevin, 71, avenue des Martyrs, 38000 Grenoble, France Sustitut für Matariahuissanschaft Tachnischa Universität Darmstadt Patarsanstrassa 22, 64287 Darmstadt Carman

^c Institut für Materialwissenschaft, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, Germany ^d Fraunhofer-Institut für Silicatforschung ISC, Brentanostr. 2, 63755 Alzenau, Germany

^e Fraunnojer-Institut jur Suicatjorschung ISC, Brentanostr. 2, 63755 Alzenau, German ^e The Bragg Institute, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

Latvian neutron user community

2. Institute of Physical Energetics, Riga, Latvia

Nuclear Instruments and Methods in Physics Research B 268 (2010) 3411-3414

Neutron Bragg diffraction on a thick Ge single crystal excited by ultrasound

E. Raitman^{a,*}, V. Gavrilov^a, D. Mjasischev^a, A. Hoser^b, N. Stüβer^b, A. Arulraj^b ^aInstitute of Physical Energetics, Riga, Latvia ^bHelmholtz Zentrum, EENSC, Berlin, Germany

Eur. Phys. J. E (2013) **36**: 80 DOI 10.1140/epje/i2013-13080-5

The European Physical Journal E

Regular Article

Perspectives in biological physics: The nDDB project for a neutron Dynamics Data Bank for biological macromolecules^{*}

Leonid Rusevich^{1,8}, Victoria García Sakai², Bruno Franzetti^{3,4,5}, Mark Johnson¹, Francesca Natali^{1,6}, Eric Pellegrini¹, Judith Peters^{1,3,4,5}, Jörg Pieper⁷, Martin Weik^{3,4,5}, and Giuseppe Zaccai^{1,3,4,5,a}

¹ ILL, 6, rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9, France

- ² ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
- ³ CEA, Institut de Biologie Structurale, F-38027 Grenoble Cedex 1, France
- ⁴ CNRS, UMR5075 F-38027 Grenoble Cedex 1, France
- ⁵ Université Joseph Fourier, UFR PhITEM, F-38041, Grenoble Cedex, France

⁶ CNR-IOM, OGG, c/o ILL, F-38042 Grenoble Cedex 9, France

- ⁷ Institute of Physics, University of Tartu, Tartu, Estonia
- ⁸ Institute of Physical Energetics, 21 Aizkraukles Str., Riga, LV-1006, Latvia

More details from Leonid Rusevich in 20 -25 min !!!

Latvian neutron user community

- 3. Riga Technical University, Institute of Materials and Structures
- 4. Institute of Physics of University of Latvia, (Salaspils-team)
- 5 Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia (Zellu-team)

They are presented here by:

Mihails Ščepanskis (LU -University of Latvia)

Nikolajs Toropovs (Riga Technical University, Inst of Materials and Structures)

They work in close collaboration with PSI (Paul Scherrer Institute), is the largest research institute for natural and engineering sciences in Switzerland.

Dr. Knud Thomsen from Paul Scherrer Institut

Conclusion

- 1. We have enough research groups, working with neutrons.
- 2. Our interests are wide enough.
- 3 It will be good if Latvia will get ESS membership ASAP.
- 4. It would be even better if the neutron-related research would have some priority for national funding
- 5. It would be absolutely perfect if all scientific research related to European research large scale facilities, would have proper priority, too.....

not only because LV is small country, but also because of professional project evaluation etc)