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SINQ 

• SINQ is the Swiss spallation neutron source 
• continuos source wit a flux of about 1014 n/(cm2 s) 
• equipped with different instruments: diffractometers,small-

angle scattering,reflectometers, spectrometers, … 
• major shutdown & upgrades in winter 
• some of the instruments are getting old, in particular 

electronics 
• the instrument RITA2 is currently undergoing such an upgrade

Motivations
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RITA2 instrument upgrade 

RITA2 is a triple-axis spectrometer designed for moderate flux of cold 

neutrons combined with an extremely low background 

• the main detector is an area sensitive detector with 128x128 pixels 

• the electronics has been conceived in the ‘80s: it is getting quite old, 

there are no spare parts nor documentation… 

• during SINQ shutdown RITA2 electronics has been upgraded 

• 2nd generation data acquisition 

• event streaming with 2nd generation DAQ



In order to develop the histogram memory SW we need 

• an event streaming format (BS-like) 
• an event generator that provides data in event format 

The idea beyond using an event generator 

• read NeXus data file for the instrument 

• convert into event format 

• send to the histogram memory & histogram 

• compare initial and final data 

• recently the streaming interface for the electronics was completed, we 
can work with “the real thing”

5



We (still) have no real-time data: implementation was only possible 
thanks to the event generator. 

It was also the playground to learn about 0MQ. 

• nEventGenerator: C++, 0MQ, reads NeXus file. Data format similar to 
bsr wrt final implementation at PSI. Consists of a generator+reader 

• nEventGeneratorPy: python, 0MQ, NeXus, twisted. Data & header 
format changed to agree with final RITA2 DAQ electronics specification. 
Generator+reader, can be driven from external signal via twisted 

• mcstasGenerator: python, 0MQ, mcstas. Same data format of RITA2, 
can read the output of a mcstas simulation and stream data. The idea is 
to define 1D, 2D and N-D detectors and build instruments on top of 
them 

Can be used not only to emulate data and explore bandwidth, but also to 
test hardware failures

Development strategy
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mcstasGenerator

mcstas output consists of ASCII files for each detector in the instrument 

Detectors (monitors) can be 1D (ToF), 2D (PSD) or n-D 

• information on the simulation and values (min, max, content) introduced 
by “#” 

• follow blocks of data: intensity, standard deviation, neutron counts 

The idea is to “build” the instrument 

• detector classes know how to read mcstas output (only 3 types are 
required) 

• “build” the instrument class instantiating the detectors 

• convert data into streaming format 

• send data using 0MQ
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Event data format

• “ds”: describe data format (64bit) 

• “ts”: event timestamp (32bit) 

• “bsy”, “cnt”, “rok”, “gat”: hardware status (1bit each) 

• “evt” : event type [channel id, position+channel, 2D] (4bit) 

• measured values id0, id1 (12bit each) 

• number of events 

• “hs”: status of streaming hardware 

• any error 

• buffer full 

• any error within 0MQ 

• counter for lost events
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SINQ Histogram Memory

A few concerns as regards the software side of the upgrade: 

• it ha to be performed during SINQ shutdown 

• we have no time to write a brand new acquisition software 

• the choice was to extend SINQhm to allow event streaming by 
making use of ØMQ 

The SINQ histogram memory consists of two main parts: 

• histogram filler: events acquisition and histogramming 

• EGI webserver (users): monitor and control data acquisition 

These are different process, communicate via shared memory
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HM at work

original data reconstructed histogram

difference in counts due to repeated streaming of same data
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Communications structure

Data header + zmq_getsockopt::ZMQ_RCVMORE acts as heartbeat 

• header will be sent even if data will not 

• filler waits for data only if ZMQ_RCVMORE == 1

extern volatile unsigned int *shm_cfg_ptr; 

int zeromq_init() 
{ 

    /* ... */ 
    if ( !shm_cfg_ptr[CFG_FIL_ZMQ_INI_DONE] ) { 
        /* Creates 0MQ context and socket */ 
        /* if the latter fails notify */ 
        zmqContext = zmq_ctx_new(); 
        pullSocket = zmq_socket(zmqContext,ZMQ_PULL); 
        if (pullSocket == NULL ) { 
            shm_cfg_ptr[CFG_ZMQ_SICS_STATUS] = 
ZMQ_CONNECT_ERROR; 
            dbg_printf(DBGMSG_ERROR,"0MQ init failure\n"); 
        } 
        /* ... */ 
    } 

    status = zmq_connect(pullSocket,zeromq_bind_address); 
    shm_cfg_ptr[CFG_FIL_ZMQ_INI_ERROR] = status; 
    if ( status != 0) { 
        shm_cfg_ptr[CFG_ZMQ_SICS_STATUS] = ZMQ_CONNECT_ERROR; 
        dbg_printf(DBGMSG_ERROR,"0MQ connection error\n"); 
    } 
    /* ... */ 
    status = zmq_setsockopt (pullSocket, ZMQ_TCP_KEEPALIVE, 
                             &value, sizeof(value)); 

    /* ... */ 
    /* milliseconds before timeout */ 
    value = DEFAULT_TIMEOUT; 
    status = zmq_setsockopt (pullSocket, ZMQ_RCVTIMEO, 
                             &value, sizeof(value)); 

    shm_cfg_ptr[CFG_FIL_ZMQ_INI_DONE]  = 1; 
    shm_cfg_ptr[CFG_FIL_ZMQ_FIRST_PKG] = 1; 
    /* ... */ 
}

int zmqReceive(packet_type* p) 
{ 

    if ( shm_cfg_ptr[CFG_FIL_ZMQ_INI_DONE] && ! shm_cfg_ptr[CFG_FIL_ZMQ_INI_ERROR] ) { 

        /* header and data blod are sent with different zmq_send but as a single message (via 
ZMQ_SNDMORE) */ 
        /* at the beginning ZMQ_RCVMORE flag is set to 0, so if this holds we are receiving the 
header. */ 
        /* If the flag has value 1 we are receiving data without header! */ 
        zmq_getsockopt(pullSocket, ZMQ_RCVMORE, &rcvmore , &optlen); 
        if (!rcvmore) { 

            bytesRead =  zmq_recv (pullSocket, headerData, 1024, 0); 

            if ( bytesRead < 0 ) { 
                /* ... */ 
                /* Error: try reconnect */ 
                return ZMQ_RECV_TIMEOUT; 
            } 

            /* Get the flag value: if the message has another part, there will be data */ 
            zmq_getsockopt(pullSocket, ZMQ_RCVMORE, &rcvmore , &optlen); 

            /* Parse header, if anything goes wrong notify */ 
            cJSON* root = cJSON_Parse(headerData); 
            parse_header_value(root,"pid"       ,&(p->ptr)         ); 
            parse_header_value(root,"ts"        ,&tsCounter        ); 
            parse_header_array(root,"ds",""   ,1,&(p->length)      ); 
            if (p->length < 0 || p->ptr < 0 || tsCounter <= 0) { 
                shm_cfg_ptr[CFG_ZMQ_SICS_STATUS] = ZMQ_HEADER_ERROR; 
                shm_cfg_ptr[CFG_FIL_PKG_INCOMPLETE]++; 
                dump_error("0MQ header warning",DBGMSG_WARNING); 
            } 
        } 

        /* Start receiving data */ 
        while (rcvmore) { 

            bytesRead =  zmq_recv (pullSocket, dataBuffer+bytesCnt, required_memory, 0); 
            if ( bytesRead < 0 ) { 
                /* ... */ 
                /* No data received before timeout, notify */ 
                return ZMQ_RECV_TIMEOUT; 
            } 
            /* Are there other parts? */ 
            zmq_getsockopt(pullSocket, ZMQ_RCVMORE, &rcvmore , &optlen); 
            /* If the amount of received data is smaller than expected, notify */ 
            if ( bytesRead < required_memory && !rcvmore) { 
                /* ... */ 
                return ZMQ_INCOMPLETE_PACKAGE; 
            } 

        } 
        else { 
            dump_error("Received data without header",DBGMSG_WARNING); 
            shm_cfg_ptr[CFG_FIL_PKG_INCOMPLETE]++; 
        } 

    } 
} 
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DAQ structure

void daq_loop_0mq() 
{ 

    shm_cfg_ptr[CFG_FIL_FILLER_STATE]=FILLER_STATE_DAQ_LOOP; 
    init_daq_zmq_start(&packet);  // zeros packet info & HM 

    while ( shm_cfg_ptr[CFG_SRV_DO_DAQ_CMD] ) { 

        if ( !shm_cfg_ptr[CFG_SRV_DAQ_PAUSE_CMD] )  { 

            while (1) { 

                status = zmqReceive(&packet); // receives zmq message & 
update counters 
                if (status != 0) { 
                    packet.length = 0; 
                    if ( /* ..._ZMQ_RCVTO] || !..._INI_DONE] || !
_ZMQ_INI_ERROR] */ ) { 
                        /* ... */ 
                        zeromq_init(); 
                        continue; 
                    } 
                } 
                if ( /* everything ok */ ) { 
                    process_packet_fcn(packet); 
                } 

                /* regularly exit from loop and check ..._DO_DAQ_CMD */ 
            } 

        } else { 
            /* if .._PAUSE_CMD receive without doing anything */ 
            /* regularly exit from loop and check ..._DO_DAQ_CMD */ 
        } 

        /* alive counter & stats */ 
        shm_cfg_ptr[CFG_FIL_ALIVE_DAQ_LOOP]++; 
        /* ... */ 
    } 

    /* when _DO_DAQ_CMD] == 0 stop DAQ */ 
    leave_daq_loop(); 
}

void config_zeromq_loop(void) 
{ 

    shm_cfg_ptr[CFG_FIL_FILLER_STATE]=FILLER_STATE_CONFIG_LOOP; 
    /** 
     * on entering: CFG_SRV_DO_CFG_CMD == 0, 
                    CFG_FIL_DO_CFG_ACK == 0, 
     * if filler_valid == (nil) => keeps polling doing nothing 
     **/ 
    while (1) { 
        /* if user start/stop DAQ construct/destruct process and notify 
*/ 
        if (shm_cfg_ptr[CFG_SRV_DO_CFG_CMD] && !
shm_cfg_ptr[CFG_FIL_DO_CFG_ACK]) { 
            status = process_construct(); 
            /* ... */ 
            shm_cfg_ptr[CFG_FIL_DO_CFG_ACK] = 1; 
        } 
        if (!shm_cfg_ptr[CFG_SRV_DO_CFG_CMD] && 
shm_cfg_ptr[CFG_FIL_DO_CFG_ACK]) { 
            process_destruct(); 
            shm_cfg_ptr[CFG_FIL_DO_CFG_ACK] = 0; 
        } 

        /* if the filler is valid, configuratin is done and DAQ is ON 
*/ 
        if (shm_histo_ptr->filler_valid == DATASHM_CFG_FIL_VALID) { 
            if (shm_cfg_ptr[CFG_SRV_DO_DAQ_CMD] && 
shm_cfg_ptr[CFG_FIL_DO_CFG_ACK]) { 
                /* ... */ 
                daq_loop_0mq(); 
                
shm_cfg_ptr[CFG_FIL_FILLER_STATE]=FILLER_STATE_CONFIG_LOOP; 
                shm_cfg_ptr[CFG_FIL_DO_DAQ_ACK] = 0; 
            } 
        } 
        /* ... */ 
        /* Update stats & counters */ 
        update_pkg_stat_cnt(); 
        shm_cfg_ptr[CFG_FIL_ALIVE_CONFIG_LOOP]++; 
        /* ... */ 
    } 

}
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Results and conclusion

Adapting the SINQ histogram memory to the upgraded RITA2 electronics was 
the opportunity to test future developments within BrightNESS 

• ØMQ 

• event generators 

The final SINQhm solution satisfies our requirements 

• stability 

• recovering after disconnections 

• bandwith (up to ~800* MB/s) 

Expected to be “at work” in the next few days
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