
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Upgrade of SINQ histogram memory

Michele Brambilla :: Scientific Software Developer :: Paul Scherrer Institut

BrightnESS meeting, Lund

2

Outline

• Motivations

• Event generators

• SINQ histogram memory

3

SINQ

• SINQ is the Swiss spallation neutron source
• continuos source wit a flux of about 1014 n/(cm2 s)
• equipped with different instruments: diffractometers,small-

angle scattering,reflectometers, spectrometers, …
• major shutdown & upgrades in winter
• some of the instruments are getting old, in particular

electronics
• the instrument RITA2 is currently undergoing such an upgrade

Motivations

4

RITA2 instrument upgrade

RITA2 is a triple-axis spectrometer designed for moderate flux of cold

neutrons combined with an extremely low background

• the main detector is an area sensitive detector with 128x128 pixels

• the electronics has been conceived in the ‘80s: it is getting quite old,

there are no spare parts nor documentation…

• during SINQ shutdown RITA2 electronics has been upgraded

• 2nd generation data acquisition

• event streaming with 2nd generation DAQ

In order to develop the histogram memory SW we need

• an event streaming format (BS-like)
• an event generator that provides data in event format

The idea beyond using an event generator

• read NeXus data file for the instrument

• convert into event format

• send to the histogram memory & histogram

• compare initial and final data

• recently the streaming interface for the electronics was completed, we
can work with “the real thing”

5

We (still) have no real-time data: implementation was only possible
thanks to the event generator.

It was also the playground to learn about 0MQ.

• nEventGenerator: C++, 0MQ, reads NeXus file. Data format similar to
bsr wrt final implementation at PSI. Consists of a generator+reader

• nEventGeneratorPy: python, 0MQ, NeXus, twisted. Data & header
format changed to agree with final RITA2 DAQ electronics specification.
Generator+reader, can be driven from external signal via twisted

• mcstasGenerator: python, 0MQ, mcstas. Same data format of RITA2,
can read the output of a mcstas simulation and stream data. The idea is
to define 1D, 2D and N-D detectors and build instruments on top of
them

Can be used not only to emulate data and explore bandwidth, but also to
test hardware failures

Development strategy

6

mcstasGenerator

mcstas output consists of ASCII files for each detector in the instrument

Detectors (monitors) can be 1D (ToF), 2D (PSD) or n-D

• information on the simulation and values (min, max, content) introduced
by “#”

• follow blocks of data: intensity, standard deviation, neutron counts

The idea is to “build” the instrument

• detector classes know how to read mcstas output (only 3 types are
required)

• “build” the instrument class instantiating the detectors

• convert data into streaming format

• send data using 0MQ

7

Event data format

• “ds”: describe data format (64bit)

• “ts”: event timestamp (32bit)

• “bsy”, “cnt”, “rok”, “gat”: hardware status (1bit each)

• “evt” : event type [channel id, position+channel, 2D] (4bit)

• measured values id0, id1 (12bit each)

• number of events

• “hs”: status of streaming hardware

• any error

• buffer full

• any error within 0MQ

• counter for lost events

8

9

SINQ Histogram Memory

A few concerns as regards the software side of the upgrade:

• it ha to be performed during SINQ shutdown

• we have no time to write a brand new acquisition software

• the choice was to extend SINQhm to allow event streaming by
making use of ØMQ

The SINQ histogram memory consists of two main parts:

• histogram filler: events acquisition and histogramming

• EGI webserver (users): monitor and control data acquisition

These are different process, communicate via shared memory

10

HM at work

original data reconstructed histogram

difference in counts due to repeated streaming of same data

sinqhm_filler

sinqhmegi

event
generator

RITA2
electronics

download histogram

download raw data (NeXus generation)

SICS monitoring

mongoDB

shared
memory

11

sinqhm_filler

sinqhmegi

event
generator

RITA2
electronics

download histogram

download raw data (NeXus generation)

SICS monitoring

mongoDB

Here’s where ØMQ
comes into play

shared
memory

12

Communications structure

Data header + zmq_getsockopt::ZMQ_RCVMORE acts as heartbeat

• header will be sent even if data will not

• filler waits for data only if ZMQ_RCVMORE == 1

extern volatile unsigned int *shm_cfg_ptr;

int zeromq_init()
{

 /* ... */
 if (!shm_cfg_ptr[CFG_FIL_ZMQ_INI_DONE]) {
 /* Creates 0MQ context and socket */
 /* if the latter fails notify */
 zmqContext = zmq_ctx_new();
 pullSocket = zmq_socket(zmqContext,ZMQ_PULL);
 if (pullSocket == NULL) {
 shm_cfg_ptr[CFG_ZMQ_SICS_STATUS] =
ZMQ_CONNECT_ERROR;
 dbg_printf(DBGMSG_ERROR,"0MQ init failure\n");
 }
 /* ... */
 }

 status = zmq_connect(pullSocket,zeromq_bind_address);
 shm_cfg_ptr[CFG_FIL_ZMQ_INI_ERROR] = status;
 if (status != 0) {
 shm_cfg_ptr[CFG_ZMQ_SICS_STATUS] = ZMQ_CONNECT_ERROR;
 dbg_printf(DBGMSG_ERROR,"0MQ connection error\n");
 }
 /* ... */
 status = zmq_setsockopt (pullSocket, ZMQ_TCP_KEEPALIVE,
 &value, sizeof(value));

 /* ... */
 /* milliseconds before timeout */
 value = DEFAULT_TIMEOUT;
 status = zmq_setsockopt (pullSocket, ZMQ_RCVTIMEO,
 &value, sizeof(value));

 shm_cfg_ptr[CFG_FIL_ZMQ_INI_DONE] = 1;
 shm_cfg_ptr[CFG_FIL_ZMQ_FIRST_PKG] = 1;
 /* ... */
}

int zmqReceive(packet_type* p)
{

 if (shm_cfg_ptr[CFG_FIL_ZMQ_INI_DONE] && ! shm_cfg_ptr[CFG_FIL_ZMQ_INI_ERROR]) {

 /* header and data blod are sent with different zmq_send but as a single message (via
ZMQ_SNDMORE) */
 /* at the beginning ZMQ_RCVMORE flag is set to 0, so if this holds we are receiving the
header. */
 /* If the flag has value 1 we are receiving data without header! */
 zmq_getsockopt(pullSocket, ZMQ_RCVMORE, &rcvmore , &optlen);
 if (!rcvmore) {

 bytesRead = zmq_recv (pullSocket, headerData, 1024, 0);

 if (bytesRead < 0) {
 /* ... */
 /* Error: try reconnect */
 return ZMQ_RECV_TIMEOUT;
 }

 /* Get the flag value: if the message has another part, there will be data */
 zmq_getsockopt(pullSocket, ZMQ_RCVMORE, &rcvmore , &optlen);

 /* Parse header, if anything goes wrong notify */
 cJSON* root = cJSON_Parse(headerData);
 parse_header_value(root,"pid" ,&(p->ptr));
 parse_header_value(root,"ts" ,&tsCounter);
 parse_header_array(root,"ds","" ,1,&(p->length));
 if (p->length < 0 || p->ptr < 0 || tsCounter <= 0) {
 shm_cfg_ptr[CFG_ZMQ_SICS_STATUS] = ZMQ_HEADER_ERROR;
 shm_cfg_ptr[CFG_FIL_PKG_INCOMPLETE]++;
 dump_error("0MQ header warning",DBGMSG_WARNING);
 }
 }

 /* Start receiving data */
 while (rcvmore) {

 bytesRead = zmq_recv (pullSocket, dataBuffer+bytesCnt, required_memory, 0);
 if (bytesRead < 0) {
 /* ... */
 /* No data received before timeout, notify */
 return ZMQ_RECV_TIMEOUT;
 }
 /* Are there other parts? */
 zmq_getsockopt(pullSocket, ZMQ_RCVMORE, &rcvmore , &optlen);
 /* If the amount of received data is smaller than expected, notify */
 if (bytesRead < required_memory && !rcvmore) {
 /* ... */
 return ZMQ_INCOMPLETE_PACKAGE;
 }

 }
 else {
 dump_error("Received data without header",DBGMSG_WARNING);
 shm_cfg_ptr[CFG_FIL_PKG_INCOMPLETE]++;
 }

 }
}

13

DAQ structure

void daq_loop_0mq()
{

 shm_cfg_ptr[CFG_FIL_FILLER_STATE]=FILLER_STATE_DAQ_LOOP;
 init_daq_zmq_start(&packet); // zeros packet info & HM

 while (shm_cfg_ptr[CFG_SRV_DO_DAQ_CMD]) {

 if (!shm_cfg_ptr[CFG_SRV_DAQ_PAUSE_CMD]) {

 while (1) {

 status = zmqReceive(&packet); // receives zmq message &
update counters
 if (status != 0) {
 packet.length = 0;
 if (/* ..._ZMQ_RCVTO] || !..._INI_DONE] || !
_ZMQ_INI_ERROR] */) {
 /* ... */
 zeromq_init();
 continue;
 }
 }
 if (/* everything ok */) {
 process_packet_fcn(packet);
 }

 /* regularly exit from loop and check ..._DO_DAQ_CMD */
 }

 } else {
 /* if .._PAUSE_CMD receive without doing anything */
 /* regularly exit from loop and check ..._DO_DAQ_CMD */
 }

 /* alive counter & stats */
 shm_cfg_ptr[CFG_FIL_ALIVE_DAQ_LOOP]++;
 /* ... */
 }

 /* when _DO_DAQ_CMD] == 0 stop DAQ */
 leave_daq_loop();
}

void config_zeromq_loop(void)
{

 shm_cfg_ptr[CFG_FIL_FILLER_STATE]=FILLER_STATE_CONFIG_LOOP;
 /**
 * on entering: CFG_SRV_DO_CFG_CMD == 0,
 CFG_FIL_DO_CFG_ACK == 0,
 * if filler_valid == (nil) => keeps polling doing nothing
 **/
 while (1) {
 /* if user start/stop DAQ construct/destruct process and notify
*/
 if (shm_cfg_ptr[CFG_SRV_DO_CFG_CMD] && !
shm_cfg_ptr[CFG_FIL_DO_CFG_ACK]) {
 status = process_construct();
 /* ... */
 shm_cfg_ptr[CFG_FIL_DO_CFG_ACK] = 1;
 }
 if (!shm_cfg_ptr[CFG_SRV_DO_CFG_CMD] &&
shm_cfg_ptr[CFG_FIL_DO_CFG_ACK]) {
 process_destruct();
 shm_cfg_ptr[CFG_FIL_DO_CFG_ACK] = 0;
 }

 /* if the filler is valid, configuratin is done and DAQ is ON
*/
 if (shm_histo_ptr->filler_valid == DATASHM_CFG_FIL_VALID) {
 if (shm_cfg_ptr[CFG_SRV_DO_DAQ_CMD] &&
shm_cfg_ptr[CFG_FIL_DO_CFG_ACK]) {
 /* ... */
 daq_loop_0mq();

shm_cfg_ptr[CFG_FIL_FILLER_STATE]=FILLER_STATE_CONFIG_LOOP;
 shm_cfg_ptr[CFG_FIL_DO_DAQ_ACK] = 0;
 }
 }
 /* ... */
 /* Update stats & counters */
 update_pkg_stat_cnt();
 shm_cfg_ptr[CFG_FIL_ALIVE_CONFIG_LOOP]++;
 /* ... */
 }

}

14

Results and conclusion

Adapting the SINQ histogram memory to the upgraded RITA2 electronics was
the opportunity to test future developments within BrightNESS

• ØMQ

• event generators

The final SINQhm solution satisfies our requirements

• stability

• recovering after disconnections

• bandwith (up to ~800* MB/s)

Expected to be “at work” in the next few days

15

