
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Experiences with ØMQ

Michele Brambilla :: Scientific Software Developer :: Paul Scherrer Institut

BrightnESS meeting, Lund

What ØMQ is

2

Message library primary mean to scale that acts as concurrency framework

From the point of view off networking:

• broker free

• various transport process: in-process, inter-process,TCP, multicast

• N-to-N connections

• different socket pattern: pub-sub, request-reply,…

• asynchronous I/O

From the point of view of programming:

• many languages supported: C, C++, C#, Python, Java, Tcl (Clojure, Delphi,
Erlang, Go, Haskell, Lisp, Obj-C, PHP, Ruby,…)

• open source

• fast to learn, fast to use

• huge online documentation

ØMQ features

3

• Messages are blobs of 0 to N bytes

• No difference between text (attention!) and raw data

• Messages can consist of multiple parts

• Message queues at sender and receiver

• One socket can connect to many socket: receiver can filter messages

• Automatic TCP reconnect (I will discuss with SINQhm)

• Zero copy for large messages (increase performances)

import zmq

step 1: create context
context = zmq.Context()

#step 2: create socket & connect
socket = context.socket(zmq.PUB)
socket.bind("tcp://*:5557")

#step 3: send
msg = “Hello”
socket.send(msg)

import zmq

step 1: create context
context = zmq.Context()

#step 2: create socket & connect
socket = context.socket(zmq.SUB)
socket.connect("tcp://127.0.0.1:5557")

#step3: receive
msg = socket.recv()

ØMQ features

4

nonblocking send & recv
socket.send(msg,flag=NOBLOCK)
socket.recv(msg,flag=NOBLOCK)

multipart message
socket.send(msg0,flag=SNDMORE)
socket.send(msg1)

while more:
 msg.append(socket.recv())
 more = socket.getsockopt(zmq.RCVMORE)

limit number of messages that can be buffered
socket.setsockopt(zmq.HWM, 1000)

set a filter for incoming messages
topicfilter = "10001"
socket.setsockopt(zmq.SUBSCRIBE, topicfilter)

set a timeout for the receiver
socket.setsockopt(zmq.RCVTIMEO, timeout)

do not copy message in local buffer
socket.send(msg,copy=False)
socket.recv(msg,copy=False)

• Messages are blobs of 0 to N bytes

• No difference between text (attention!) and raw data

• Messages can consist of multiple parts

• Message queues at sender and receiver

• One socket can connect to many socket: receiver can filter messages

• Automatic TCP reconnect (I will discuss with SINQhm)

• Zero copy for large messages (increase performances)

Basic message patterns

5

ØMQ provides sockets which enables advantage of message patterns

• PAIR

• PUSH - PULL

• REQ - REP

• PUB - SUB

Each pattern defines constrain on the network topology

Failures
• Server dies

• With many connect/disconnect applications can leak memory and get slower

• Is network silence “good” or “bad”?

• If TCP connection stays silent for a while, network can disconnect

Techniques for reliability

6

PUSH-PULL

• Distribute messages between multiple workers in a pipeline

• One directional connection

• Round-robin distributor

• Producer and collector stable part of architecture, consumers dynamic part

Possible issues

• If one consumer connects faster will receive more messages

• Large tasks requiring time to complete can cause unbalance

• If a consumer dies (while working) producer doesn’t know

7

PUB-SUB

• Addresses the “group messaging” problem

• Aimed for scalability: large volumes data sent rapidly to many recipients

• One-directional communications: no possibility to coordinate senders and
receivers

• Messages are distributed without the knowledge of what or if any subscriber
exist: a publisher with no connected subscribers drops the packages

• Filtering happens at the subscriber side

Possible issues

• Subs join late or drop off: messages are lost

• Subs slow fetching messages: queues overflow, pubs crash

• Network become overloaded and drop data

8

REQ-REP

• Distribute messages between multiple workers

• Client-server model

• Synchronous request-reply dialog

Possible issues

• Server dies: client hangs forever

• Network loses request or reply: client hangs forever

9

PAIR

• 1-to-1 bidirectional connection

• No specific state stored within socket

• Sever listen (bind) on a certain port and client connects to it

Multithreading & multiprocessing

• Design as message-driven application

• No need of locks and semaphores

• Transport: inproc:// , tcp://

If both ends are dynamic it is not a good idea to provide well known ports.

ØMQ provides forwarding devices that became the stable point other components connect
to

10

0MQ devices

• QUEUE: forwarding device for request/reply communications

• FORWARDER: forwarding device for pub/sub communications

• STREAMER: streamer device for pipelined parallel communications

11

ØMQ provides a communication library with turns out to be fast and reliable:

• the main communication patterns are already defined

• “devices” are in principle not required but can be useful, depending on the network
structure.

• can handle different communication protocols and languages

• interoperable within different languages

Yes, it has some drawbacks:

• it provides only the communication layer, we have to build everything else on our
own

• doesn’t provide serialisation

• requires developers take care of possible failures

Conclusion

Setup and results

4

• We are exploring different streaming solutions 0MQ, EPICS and shared memory
• Original data can be multiplied in order to reach ESS-like throughput
• 0MQ and EPICS: behaviour increasing message size / # clients

Above a given multiplier (N = 10 for
AMOR) EPICS fails, due to the absence
of a missed package recovery system

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0

0 5 10 15 20 25

Th
ro
ug
hp
ut
	[
M
B/
s]

multiplier

0MQ	vs	EPICS

0MQ EPICS

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8

Th
ro
ug
hp
ut
	[
M
B/
s]

#	clients

0MQ	multiple	clients

single cumulative

0

500

1000

1500

2000

0 20 40 60 80 100 120 140 160

Ba
nd
w
ith
	[
M
B/
s]

Message	size	[MB]

0MQ	throughput

FOCUS AMOR RITA2

